Dynamic Syntax in Type Theory with Records

Robin Cooper and Staffan Larsson
Centre for Linguistic Theory and Studies in Probability (CLASP)
Dept. of Philosophy, Linguistics and Theory of Science
University of Gothenburg

This abstract sketches how part of Dynamic Syntax (DS, Kempson et al., 2001) can be rendered
in TTR, a Type Theory with Records (Cooper, 2012, in prep; Cooper and Ginzburg, 2015) . We
explore this as an alternative to DS-TTR (Eshghi, 2015) which adds TTR interpretations to DS
but does not code the whole of DS in TTR. DS tree nodes are modelled as records of the type:

type : Type
() | S s ore
. type

However, tree nodes may also have daughters. Therefore we define a (basic, recursive) type
Tree such that

type : Type
(2) a:Treeiff a:| cont ;. type
daughters : Tree*

Here ‘Tree*’ denotes the type of strings of trees. The ‘*’ is related to the Kleene-*. We will
use ‘e’ to represent the empty string.

The TTR type for the tree for John arrived is shown in (3).

type=t : Dype
cont : type
3) type=e : Type type=e — t . Type
daughters : cont=john’ : type | cont=\z:e. arrive(x) : type
daughters=e : Tree* daughters=e 1 Tree*
This can be rendered more diagrammatically as in (4).
“4) type=t : Type
cont : type
type=e : Dype type=e — ¢t : Dype
cont=john’ : type cont=Az:e . arrive(x) : type

Note that this represents a tree type, not a tree (cf. underspecified trees in DS). A record type
is fully specified iff all its fields are manifest (in TTR notation, a manifest field in a record is
written ¢ = v : T where ¢ is a label, v is a value of type T'). It is underspecified otherwise. For
example, the type in (4) is underspecified with respect to the path ‘cont’.

1

Consider the DS lexical entry in (5).

john:
THEN put (Ty(e))

put (Fo(john'))
ELSE abort

We might think of (5) as a kind of update rule which refines a type. It might be expressed as

something like (6).

6) IfT;= typeze = Type
! cont © type |’

then set 7; 4 to be [type:§ , + Dpe]
cont=john’ : type

We could think of (6) as a type rewrite rule and express it in symbols as in (7).

) type=e : Type N type=e . Type
cont 1 type cont=john’ : type

This rewrite rule is a refinement since the type to the right of the arrow is a subtype of the type
to the left. Any monotonic update would be a type refinement of this kind.

An alternative would be to introduce TTR-style content to the lexical entry for John as in (8).

) [type= [x : Ind} : Type]

=
cont : type
type=|x: Ind| : Type
cont=|x=john type

In (9), we see the tree type for John arrived with TTR content added.

)] type=RecType . Type
cont= x=john : Ind voe
B arrive(x) yp
[type=|Xx: Ind]} . Type] type=([X : Ind} —RecType) . Type
cont=|x=john type cont=\r: [x : Ind} e Ina:’ type
p arrive(X)

In the presentation, we will go into some more detail about the above, and also show how
contexts and indexical pronouns can be accounted for in TTR-DS. In particular we will explore
how the use of tree types will enable us to model DS trees with unfixed nodes using a notion
of component in a record which may be embedded in a record to any arbitrary depth. We will
also give a basic introduction to TTR.

References

Cooper, Robin and Ginzburg, Jonathan 2015. Type theory with records for natural language
semantics. In Lappin, Shalom and Fox, Chris, editors 2015, The Handbook of Contemporary
Semantic Theory. Wiley-Blackwell, second edition. 375-407.

Cooper, Robin 2012. Type theory and semantics in flux. In Kempson, Ruth; Asher, Nicholas;
and Fernando, Tim, editors 2012, Handbook of the Philosophy of Science, volume 14: Phi-
losophy of Linguistics. Elsevier BV. General editors: Dov M. Gabbay, Paul Thagard and
John Woods.

Cooper, Robin prep. Type theory and language: from perception to linguistic communica-
tion. Draft of book chapters available from https://sites.google.com/site/
typetheorywithrecords/drafts.

Eshghi, Arash 2015. DS-TTR: An incremental, semantic, contextual parser for dialogue. SEM-
DIAL 2015 goDIAL 172.

Kempson, Ruth; Meyer-Viol, Wilfried; and Gabbay, Dov 2001. Dynamic syntax: the flow of
language understanding. Blackwell.

