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This abstract sketches how part of Dynamic Syntax (DS, Kempson et al., 2001) can be rendered
in TTR, a Type Theory with Records (Cooper, 2012, in prep; Cooper and Ginzburg, 2015) . We
explore this as an alternative to DS-TTR (Eshghi, 2015) which adds TTR interpretations to DS
but does not code the whole of DS in TTR. DS tree nodes are modelled as records of the type:

type : Type
() | S s ore
. type

However, tree nodes may also have daughters. Therefore we define a (basic, recursive) type
Tree such that

type : Type
(2) a:Treeiff a:| cont ;. type
daughters : Tree*

Here ‘Tree*’ denotes the type of strings of trees. The ‘*’ is related to the Kleene-*. We will
use ‘e’ to represent the empty string.

The TTR type for the tree for John arrived is shown in (3).

type=t : Dype
cont : type
3) type=e : Type type=e — t . Type
daughters : cont=john’ : type | cont=\z:e. arrive(x) : type
daughters=e : Tree* daughters=e 1 Tree*
This can be rendered more diagrammatically as in (4).
“4) type=t : Type
cont : type
type=e : Dype type=e — ¢t : Dype
cont=john’ : type cont=Az:e . arrive(x) : type

Note that this represents a tree type, not a tree (cf. underspecified trees in DS). A record type
is fully specified iff all its fields are manifest (in TTR notation, a manifest field in a record is
written ¢ = v : T where ¢ is a label, v is a value of type T'). It is underspecified otherwise. For
example, the type in (4) is underspecified with respect to the path ‘cont’.
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Consider the DS lexical entry in (5).

john:
THEN put (Ty(e))

put (Fo(john'))
ELSE abort

We might think of (5) as a kind of update rule which refines a type. It might be expressed as

something like (6).

6) IfT;= typeze = Type
! cont © type |’

then set 7; 4 to be [ type:§ , + Dpe ]
cont=john’ : type

We could think of (6) as a type rewrite rule and express it in symbols as in (7).

) type=e : Type N type=e . Type
cont 1 type cont=john’ : type

This rewrite rule is a refinement since the type to the right of the arrow is a subtype of the type
to the left. Any monotonic update would be a type refinement of this kind.

An alternative would be to introduce TTR-style content to the lexical entry for John as in (8).

) [ type= [x : Ind} : Type ]

=
cont : type
type=|x: Ind| : Type
cont=|x=john type

In (9), we see the tree type for John arrived with TTR content added.

)] type=RecType . Type
cont= x=john : Ind voe
B arrive(x) yp
[ type=|Xx: Ind]} . Type ] type=( [X : Ind} —RecType) . Type
cont=|x=john type cont=\r: [x : Ind} e Ina:’ type
p arrive(X)

In the presentation, we will go into some more detail about the above, and also show how
contexts and indexical pronouns can be accounted for in TTR-DS. In particular we will explore
how the use of tree types will enable us to model DS trees with unfixed nodes using a notion
of component in a record which may be embedded in a record to any arbitrary depth. We will
also give a basic introduction to TTR.
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