
Non-humorous use of laughter in spoken dialogue systems

Vladislav Maraev1∗ , Jean-Philippe Bernardy 1 and Christine Howes1
1Centre for Linguistic Theory and Studies in Probability (CLASP), Department of Philosophy,

Linguistics and Theory of Science, University of Gothenburg
{vladislav.maraev, jean-philippe.bernardy, christine.howes}@gu.se

Abstract
In this paper we argue that laughter, an ambigu-
ous yet ubiquitous signal in everyday interactions,
can act as an important feature for task-oriented
dialogue systems. We show which components of
a dialogue system should be affected and modi-
fied, and more specifically how particular types of
laughter can be accounted for in a dialogue man-
ager as instances of short answers, feedbacks and
vocalisations accompanying them.

1 Introduction
Laughter is very frequent in everyday interactions, for in-
stance, in the Switchboard Dialogue Act Corpus [Jurafsky
et al., 1997] corpus laughter comes about every 200 words.
Laughter is an ambiguous social signal, and in addition to
communicating joy and pleasure intuitively associated with
humour it also can communicate embarrassment, be used to
smooth and soften everyday interactions and also bear prag-
matic functions such as marking irony or usage of a word in
a specific sense [Poyatos, 1993; Mazzocconi, 2019; Ginzburg
et al., 2020].

For a spoken dialogue system, laughter is an important sig-
nal to account for due to its contribution to the naturalness of
automated dialogue. Laughter can be used in chit-chat di-
alogue due to its potential to build rapport and establish a
para-social bond between the user and artificial agent.

There have been attempts to produce laughs as a way to
mimic human behaviour and align with it [Urbain et al.,
2010; El Haddad et al., 2019], as well as laughing avatars
mainly focussed on laughter as a reaction to jokes [Ochs and
Pelachaud, 2013; Ding et al., 2014]. In this paper we take a
rather different approach. We start from examples of usage
of laughter in real task-oriented dialogue and then propose
ways how these behaviours can be reproduced in a dialogue
system, and, more specifically, in its dialogue management
component.

The example (1) below is an excerpt from a role-play di-
alogue collected by Howes et al. [2019] for their Directory
Enquiries Corpus (DEC) [Bondarenko et al., 2020]. Dialogue
participants were playing the roles of a caller and an operator,

∗Contact Author

respectively asking for the phone numbers of certain named
businesses. Half of the dialogues happened in a noisy envi-
ronment, with many mishearings and laughs induced. This
paper addresses the following research question: how can
these laughs be accounted for in a dialogue system, which
implements a similar scenario?

(1) DEC:22_KL_loc2
56 Caller er the next one is er tanfield

chambers
57 Operator santias?
58 Caller tanfield like t- T A N
59 Operator sorry i don’t hear you again

please?
60 Caller er T A N
61 Operator C?
62 Caller tanfield
63 Operator A
64 Operator N
65 Caller yeah
66 Caller and then field
67 Operator and then seal?
68 Caller chambers
69 Operator <laugh> sorry i hear you quite

poorly
70 Operator let’s try again
71 Operator C?
72 Caller yeah sorry the traffic is crazy

around here
73 Operator I know <laugh> don’t worry
74 Operator so C
75 Operator A
76 Caller er
77 Caller tanfield T like thomas

Let’s look at the first laughter (line 69). We can see that the
operator’s question “and then seal?” (l.67) was not addressed
and this piece of information was not grounded. “C?” (l.71)
refers to the restart from the beginning (it was “Tanfield”, but
she has heard “C”). The negative feedback provided by the
operator (l.69) entails extra effort from the caller—she needs
to restart her request from the beginning—this obligation is
somewhat intrusive and may require extra smoothing [Maz-
zocconi, 2019; Raclaw and Ford, 2017]. For our purposes, we
will treat this laughter as accompanying negative feedback.

For a dialogue system designer, this poses an empirical
question, namely, would it be useful to soften negative feed-
back with laughter? For instance, the feedback associated
with a local failure (e.g. speech recognition failure), such as
“Sorry, I didn’t understand” or “Sorry I didn’t hear you”. It
may also be useful where negative feedback is the result of
an external query, for example, when something is not found
in the database, and can accompany a system request to start
over, as in example (1).

The reaction to the apology also can be accompanied by
laughter, as with the second laugh in (1) (l.73). We do not
think that these days users often apologise to a dialogue sys-
tem, as it is usually the dialogue system which is at fault, but
this might be different for special cases of systems that aim at
more naturalistic behaviour.

In this paper we consider laughter from the utilitarian per-
spective and attempt to determine which kinds of laughs can
be relevant for dialogue systems. Next, we will look at laugh-
ter from the point of view of providing feedback, either posi-
tive or negative.

In Section 2 will start with a background on our approach
to dialogue, dialogue management and laughter. Next, Sec-
tion 3 presents a small typology of laughter types that we
think should be accounted for in a task-oriented dialogue sys-
tem. In Section 4 we describe our own dialogue management
framework and in Section 5 we show a formal account for the
aforementioned types of laughter. We conclude with a brief
discussion of our findings and further laughter-related issues
in Section 6.

2 Background
2.1 Dialogue
A key aspect of dialogue systems is the coherence of the sys-
tem’s responses. In this respect, a key component of a dia-
logue system is the dialogue manager, which selects appro-
priate system actions depending on the current state and the
external context.

Two families of approaches to dialogue management can
be considered: hand-crafted dialogue strategies [Allen et al.,
1995; Larsson, 2002; Jokinen, 2009] and statistical modelling
of dialogue [Rieser and Lemon, 2011; Young et al., 2010;
Williams et al., 2017]. Frameworks for hand-crafted strate-
gies range from finite-state machines and form-filling to more
complex dialogue planning and logical inference systems,
such as Information State Update (ISU) [Larsson, 2002] that
we employ here. Although there has been a lot of devel-
opment in dialogue systems in recent years, only a few ap-
proaches reflect advancements in dialogue theory. Our aim
is to closely integrate dialogue systems with work in theo-
retical semantics and pragmatics of dialogue. In this paper
we do so by employing our own implementation of the KoS
theoretical dialogue framework [Ginzburg, 2012] which we
discussed in [Maraev et al., 2020]. In this work we extend
our implementation with rudimentary support of grounding,
therefore allowing the implementation to be further extended
to support certain types of laughter.

In KoS (and many other dynamic approaches to meaning),
language is treated as a game, containing players (interlocu-

tors), goals and rules. KoS represents language interaction by
a dynamically changing context. The meaning of an utterance
is then how it changes the context. Compared to most ap-
proaches, which represent a single context for both dialogue
participants, KoS keeps separate representations for each par-
ticipant, using the Dialogue Game Board (DGB). Thus, the
information states of the participants comprise a private part
and the dialogue gameboard that represents information aris-
ing from publicised interactions. The DGB tracks, at least,
shared assumptions/visual field, moves (= utterances, form
and content), and questions under discussion.

In dialogue, especially in a dialogue with a machine which
involves uncertainty of automatic speech recognition (ASR)
and natural language understanding components (NLU), we
can not assume perfect communication. While communicat-
ing, especially over an unreliable communication channel,
humans give each other evidence that their contributions are
understood to a certain extent, sufficient for current purposes.
Clark [1996] and Allwood [1995] distinguish four levels of
action related to different degrees of grounding. Here we list
them according to the action ladder [Clark, 1996], from the
hearer’s perspective.

1. Acceptance level determines whether the content of ut-
terance was accepted or rejected by the hearer.

2. Understanding level specifies whether the utterance
was understood by the hearer

3. Perception level determines whether the utterance was
perceived by the hearer.

4. Contact level determines whether interlocutors have es-
tablished a channel of communication.

The action ladder assumes that if the level above is com-
plete, then all levels below are complete. For instance, if
Bob asks “Do you like Paris” and Mary replies “Yes”, then
Bob’s utterance is accepted (and also understood, perceived,
and their contact has been established). If she asks “Paris?”
then it might signal that Bob’s utterance was perceived but
not understood (and thus not accepted).

Larsson [2002] accounts for different levels of action
within the IBiS2 dialogue management framework using a
set of rules to update the common ground represented in the
information state of the system. He uses “Interactive Com-
munication Management” (ICM) moves [Allwood, 1995] as
explicit signals concerned with communicating the updates to
the common ground, and sequencing moves, e.g. restarting a
dialogue.

2.2 Laughter
Our focus of attention towards laughter is motivated by its
ubiquity in natural dialogue. In the British National Corpus,
laughter is quite a frequent signal regardless of gender and
age—the spoken dialogue part of the British National Cor-
pus (UK English, unscripted interactions that were recorded
by volunteers in various social settings, balanced for age, re-
gion and social class) contains approximately one occurrence
of laughter every 14 utterances. In the Switchboard Dialogue
Act corpus [Jurafsky et al., 1997] (US English, one-on-one

interactions over a phone where participants that are not fa-
miliar with each other discuss a potentially controversial sub-
ject, such as gun control or school system) non-verbally vo-
calised dialogue acts (whole utterances that are marked as
non-verbal) constitute 1.7% of all dialogue acts and 65% of
them contain laughter. Laughter tokens make up 0.5% of all
the tokens that occur in Switchboard Dialogue Act corpus.

Laughter production in conversation is not exclusively re-
lated to humour. But, perhaps unsurprisingly, the study of
laughter has often been linked to the study of humour and
the two terms are frequently used interchangeably. However,
laughter does not occur only in response to humour or in order
to frame it. Many studies, particularly in conversation analy-
sis, have shown its crucial role in managing conversations at
several levels: dynamics (turn-taking and topic-change), lex-
ical (signalling problems of lexical retrieval or imprecision in
the lexical choice), pragmatic (marking irony, disambiguating
meaning, managing self-correction) and social (smoothing
and softening difficult situations or showing (dis)affiliation)
[Glenn, 2003; Jefferson, 1984; Mazzocconi, 2019; Petitjean
and González-Martínez, 2015]

There have been several approaches to classify types of
laughter [e.g., Poyatos, 1993; Vettin and Todt, 2004; Mazzoc-
coni, 2019]. Mazzocconi [2019] claims that the most prob-
lematic issue with existing taxonomies is that they mix types
of laughter functions with types of laughter triggers, so she
roots her proposal on the function of laughter and the proposi-
tional content of laughable—the argument the laughter pred-
icates about, an event or state referred to by an utterance or
exophorically [Glenn, 2003]. In this paper we look at laugh-
ter not exclusively from a perspective of a taxonomy that can
be used as a theoretical framework but from the utilitarian
perspective, looking at which kinds of laughs can be relevant
for dialogue systems.

Laughter as a way for an embodied conversational agent
(ECA) to provide emotional response has gained some atten-
tion from the Affective Computing and other research com-
munities. Becker-Asano and Ishiguro [2009] evaluated the
role of laughter in the perception of social robots and indi-
cated that the situational context, determined by linguistic and
non-verbal cues (such as gaze) played an important role. Ni-
jholt [2002] discusses the challenges of integrating humour
into ECAs, and existing integration of smiling and laughter
in embodied conversational agents (ECA) is typically is trig-
gered by a joke told by a user or an agent [Ding et al., 2014;
Ochs and Pelachaud, 2013]. El Haddad et al. [2019] looked at
the mimicry of smiles and laughs between the interlocutors,
which also might be used as the basis for ECA’s behaviour.
Urbain et al. [2010] takes a similar perspective, equipping
ECAs with a capability to join its conversational partner’s
laugh. In this work we take a contrasting approach, look-
ing at pragmatic functions of some types of laughter, namely
providing feedback and answering questions, and provide a
formal account for such behaviour within a dialogue man-
agement framework.

3 Types of laughter
In this section we outline some types of laughter that can be
of special interest to task-oriented dialogue systems and can
be accounted for within our proposed framework.

3.1 Laughter as a component of grounding
As we have mentioned in Section 2, and in accord with All-
wood [1995]; Clark [1996]; Larsson [2002] we consider four
action levels that are involved in a dialogue. Here we discuss
what can happen at each level of action—contact, perception,
understanding and reaction—with respect to laughter.

Contact and perception levels
Troubles related to establishing and maintaining a stable com-
munication channel can lead to laughter. One such example
would be delays in communication, for instance over an unre-
liable network, which might lead to a person already speaking
at the moment when the communication is only supposed to
be established. Obvious examples of such cases are caused
by signal jitter over video conference platforms like Zoom.

The lack of perception indicates things that haven’t been
heard correctly (cases similar to (1)). Also, it seems that in-
terruptions or events related to that can be quite surprising and
laughter can be a natural reaction to a surprise (see Section 6).

Understanding level
The lack of pragmatic understanding relates to the kinds of
incongruities that are caused by the violation of the principle
of conversational relevance. This is very useful for dialogue
systems because they are prone to errors in this realm. It is
often the case that incorrect NLU or ASR can lead to priori-
tising irrelevant results (for example, in cases of out-of-scope
user queries), which can cause user’s confusion and, there-
fore, laughter. This type of laughter can be treated as negative
feedback.

This accounts for the examples (2) and (3) below. [Lars-
son, 2002] subdivides this level into three categories for the
negative feedback (context-dependent, context-independent
and pragmatic). The examples (2) and (3) above would re-
late to the pragmatic level of misunderstanding.

(2) from the dialogue between a virtual assistant (Diana)
and a person with ASD (Mark):

Mark Diana, what is money?
Diana I am Diana, a virtual interlocutor.
Audience (laugh)

(3) constructed example
Brian Would you like tea or coffee?
Katie yes
Brian (laughs)

A dialogue system can also be unsure about what has been
understood. In such cases, the system should demonstrate
a lower degree of commitment to what has been said as a
part of a display of understanding. For example, in the case
of the feedback regarding the user input, when the system
repeats the input after the user, it can be useful to include
laughter in verbatim repeats, which would mean: yes, I heard
(understood) this, but I might be wrong. This can also be
useful for a system’s actions taken based on low confidence
results.

Reaction (consider for acceptance) level

On this level what has being understood can be either ac-
cepted or rejected for the current purpose. Acceptance laugh-
ter can typically be related to a reaction to humour, which is
out of the scope of the current paper, or apology (see next
section).

Ginzburg et al. [2020] consider some uses of standalone
laughter as cases of negative response to a polar question (4)
or a signal of disbelief in a previously uttered assertion (5).

(4) From Ginzburg et al. [2020], context: Bayern München
goalkeeper Manuel Neuer faces the press after his
team’s (Dreierkette—three-in-the-back) defence has
proved highly problematic in the game just played
(which they won 3-2 against Paderborn).

Journalist: (smile) Dreierkette auch ‘ne Option?
(Is the three-at-the-back also
an option?)

Manuel Neuer: fuh fuh fuh
(brief laugh)

(5) From Ginzburg et al. [2020] (biblical example
rephrased as a dialogue)

God: You will at age 99 with your aged wife
Sarah have a son.

Abraham: (laughs)
→ I don’t think I will at age 99 have a son

In Section 5 we show how this kind of laughter as negative
response like (4) can be handled by the dialogue manager.

3.2 Laughter and intrusion

In natural dialogue, an intrusion is frequently associated with
laughter. In the Switchboard Dialogue Act corpus (SWDA)
[Jurafsky et al., 1997] an Apology dialogue act is more re-
lated to laughter, as compared to other dialogue acts. In
Figure 1 we show how many dialogue acts are associated
with utterances1 containing laughter, for the current dia-
logue act and for preceding and following utterances, de-
pending on the speaker. In addition to an apology, we show
its adjacency counterpart (second element of the utterance
pair produced by the other speaker [Schegloff and Sacks,
1973])—Downplayer—realised, for instance, by utterances
like “Don’t worry” or “It’s alright”.

In (6), the caller reacts with compassionate laughter to the
apology given by the operator. This is a similar instance of
laughter to one seen in (1): the second laugh shows that the
same reaction, as in (6) can be expected from the operator.

(6) DEC:16_HG_loc2

1In SWDA each utterance is typically mapped to a single dia-
logue act.

0.04
0.08

0.12
0.16

Statement-non-opinion
Apology

Downplayer

within
the given DA

in previous utterance
by self

in previous utterance
by other

in next utterance
by other

in next utterance
by self

Figure 1: Comparison of the most common dialogue act in SWDA—
“Statement-Non-Opinion” (33.27% of all utterances) with the di-
alogue acts “Apology” (0.04%) and “Downplayer” (0.05%). The
proportion of utterances that contain laughter are shown in associa-
tion with each dialogue act.

162 Operator still not finding it
163 Operator having problems with this one
164 Caller okay
165 Caller er maybe i can find
166 Caller er the place myself but thank you

very much for the information
167 Operator no problem sorry for not finding

the the last one
168 Caller <laugh>
169 Caller no worries
170 Caller thank you

We also observe that laughter can clearly accompany the
asking for a favour by the same speaker. In example (7) the
operator asks the caller if they can start from the beginning,
which can be treated as an intrusion of some sort, therefore
asking for a favour and the apology is accompanied by laugh-
ter.

(7) DEC:24_LK_loc2
59 Caller B as in bicycle
60 Operator yeah
61 Caller then you have R
62 Caller I
63 Operator R
64 Caller G
65 Operator I
66 Operator okay sorry no- now i lost the track

okay can we it start from the
beginning <laugh> sorry

67 Caller okay
68 Caller yes we can
69 Operator maybe you can just say the uh say

words
70 Caller yeah no no problem

4 Dialogue manager architecture
We believe that it is crucial to use formal tools which are most
appropriate for the task: one should be able to express the
rules of various genres of dialogue in a concise way, free,
to any possible extent, of irrelevant technical details. In the
view of Dixon et al. [2009] this is best done by represent-
ing the information-state of the agents as updatable sets of
propositions. Very often, dialogue-management rules update
subsets (propositions) of the information state independently
from the rest. A suitable and flexible way to represent such
updates is as function types in linear logic. The domain of
the function is the subset of propositions to update, and the
co-domain is the (new) set of propositions which it replaces.

By using well-known techniques which correspond well
with the intuition of information-state based dialogue man-
agement, we are able to provide a fully working prototype of
the components of our framework:

1. a proof-search engine based on linear logic, modified
to support inputs from external systems (representing
inputs and outputs of the agent)

2. a set of rules which function as a core framework for
dialogue management (in the style of KoS [Ginzburg,
2012])

3. several examples which use the above to construct po-
tential applications of the system.

4.1 Linear rules and proof search
Typically, and in particular in the archetypal logic program-
ming language prolog [Bratko, 2001], axioms and rules are
expressed within the general framework of first-order logic.
However, several authors [Dixon et al., 2009; Martens, 2015]
have proposed using linear logic [Girard, 1995] instead. For
our purpose, the crucial feature of linear logic is that hypothe-
ses may be used only once.

In general, the linear arrow corresponds to destructive state
updates. Thus, the hypotheses available for proof search cor-
respond to the state of the system. In our application, they
will correspond to the information state of the dialogue par-
ticipant.

In linear logic, normally firing a linear rule corresponds to
triggering an action of an agent, and a complete proof cor-
responds to a scenario, i.e. a sequence of actions, possibly
involving action from several agents. However, the informa-
tion state (typically in the literature and in this paper as well),
corresponds to the state of a single agent. Thus, a scenario
is conceived as a sequence of actions and updates of the in-
formation state of a single agent a, even though such actions
can be attributed to any other dialogue participant b. (That is,
they are a’s representation of actions of b.) Scenarios can be
realised as a sequence of actual actions and updates. That is,
an action can result in sending a message to the outside world
(in the form of speech, movement, etc.). Conversely, events
happening in the outside world can result in extra-logical up-
dates of the information state (through a model of the percep-
tory subsystem).

In our implementation, we treat the information state as a
multiset of linear hypotheses that can be queried. Because

they are linear, these hypotheses can also be removed from
the state. In particular, we have a fixed set of rules (they re-
main available even after being used). Each such rule ma-
nipulates a part of the information state (captured by its pre-
misses) and leaves everything else in the state alone.

Our dialogue manager (DM) models the information-state
of only one participant. Regardless, this participant can
record its own beliefs about the state of other participants.
In general, the core of the DM is comprised of a set of linear-
logic rules which depend on the domain of application. How-
ever, many rules will be domain-independent (such as generic
processing of answers). We show examples of such rules in
Section 4.4.

4.2 Questions and answers
In this paper, the essential components of the representation
of a question are a type A, and a predicate P over A. Using a
typed intuitionistic logic, we write:

A : Type P : A → Prop
The intent of the question is to find out about a value x

of type A which makes P x true, or at least entertained by
the other participant. We provide several examples in Table
1. It is worth stressing that the type A can be large (for ex-
ample asking for any location) or as small as a boolean (if
one requires a simple yes/no answer). We note in passing
that, typically, polar questions can be answered not just by a
boolean but by qualifying the predicate in question, for exam-
ple, “maybe”, “on Tuesdays”, etc. (Table 1, last two rows).
This is formalised by letting A = Prop → Prop.

4.3 Representation of questions with
metavariables

In this subsection we show how a metavariable can represent
what is being asked, as the unknown in a proposition. A first
use for metavariables is to represent the requested answer to
a question.

Within the state of the agent, if the value of the requested
answer is represented as a metavariable x , then the question
can be represented as: Q A x (P x). That is, the pending
question (Q denotes a question constructor) is a triple of a
type, a metavariable x , and a proposition where x occurs. We
stress that P x is not part of the information state of the agent
yet, rather the fact that the above question is under discussion
is a fact. For example, after asking “Where does John live?”,
we have:

haveQud : QUD (Q Location x (Live John x))

Resolving a question can be done by communicating an
answer. An answer to a question (A : Type; P : A → Prop)
can be of either of the two following forms: i) A ShortAn-
swer, which is a pair of an element X : A and its type A, rep-
resented as ShortAnswer A X or ii) An Assertion which is
a proposition R : Prop, represented as Assert R. Therefore,
one way to process a short answer is by the processShort
rule:

processShort : (a : Type) → (x : a) → (p : Prop) →
ShortAnswer a x (QUD (Q a x p) (p

question A P reply x

Where does
John live? Location λx .Live John x in London ShortAnswer Location London

Does John
live in Paris? Bool

λx .if x then (Live John Paris)
else Not (Live John Paris)

yes ShortAnswer Bool True

What time is it? Time λx .IsTime x It is 5am. Assert (IsTime 5.00)

Does John
live in Paris? Prop → Prop λm.m (Live John Paris) yes ShortAnswer (Prop → Prop)

(λx .x)

Does John
live in Paris? Prop → Prop λm.m (Live John Paris) from January ShortAnswer (Prop → Prop)

(λx .FromJanuary (x))

Table 1: Examples of questions and the possible corresponding answers. The type A is the type of possible short answers. The proposition
P x is the interpretation of a short answer x . The x column shows the formal representation of a possible answer, either in short form or
assertion form.

Above we use Π type binders to declare (meta)variables
(written here (a : Type) →, (x : a) →, etc.). This termi-
nology will make sense to readers familiar with dependent
types. For others, such binders can be thought of as universal
quantification (∀a,∀x , etc.), the difference is that the type of
the bound variable is specified.2

We demand in particular that types in the answer and in
the question match (a occurs in both places). Additionally,
because x occurs in p, the information state will mention the
concrete x which was provided in the answer. For example,
if the QUD was (Q Location x (Live John x)) and the
system processes the answer ShortAnswer Location Paris ,
then x unifies with Paris , and the new state will include
Live John Paris .

To process assertions, we can use the following rule:

processAssert : (a : Type) → (x : a) → (p : Prop) →
Assert p (QUD (Q a x p) (p

That is, if (1) p was asserted, and (2) the proposition q is
part of a question under discussion, and (3) p can be unified
with q (we ensure this unification by simply using the same
metavariable p in both roles in the above rule), then the asser-
tion resolves the question. Additionally, the metavariable x is
made ground to a value provided by p, by virtue of unification
of p and q . For example, “John lives in Paris” answers both of
the questions “Where does John live?” and “Does John live
in Paris?” (there is unification), but, not, for example, “What
time is it?” (there is no unification). Note that, in both cases
(processAssert and processShort), the information state is
updated with the proposition posed in the question.

4.4 Dialogue management
In this section we integrate our question/answering frame-
work within more complete dialogue manager (DM). We
stress that this DM models the information-state of only one

2The reader worried about any theoretical difficulty regarding
mixing linear and dependent types is directed to Atkey [2018] and
Abel and Bernardy [2020].

participant. Regardless, this participant can record its own be-
liefs about the state of other participants. In general, the core
of the DM is comprised of a set of linear-logic rules which
depend on the domain of application. However, many rules
will be domain-independent (such as the generic processing
of answers).

To be useful, a DM must interact with the outside world,
and this interaction cannot be represented using logical rules,
which can only manipulate data which is already integrated in
the information state. Here, we assume that the information
that comes from sources which are external to the dialogue
manager is expressed in terms of semantic interpretations of
moves, and contains information about the speaker and the
addressee in a structured way. We provide 5 basic types of
moves, specified with a speaker and an addressee, as an illus-
tration:

Greet spkr addr
CounterGreet spkr addr
Ask question spkr addr
ShortAnswer vtype v spkr addr
Assert p spkr addr

These moves can either be received as input or produced as
outputs. If they are inputs, they come from the NLU compo-
nent, and they enter the context with Heard : Move → Prop
predicate. For example, if one hears a greeting, the propo-
sition Heard (Greet S A) is added to the information
state/context, without any rule being fired—this is what we
mean by an external source.

If they are outputs, to be further used by the NLG com-
ponent, some rule will place them in Agenda . For example,
to issue a counter greeting, a rule will place the proposition
(CounterGreet A S) in the Cons-list Agenda part of the
information state.

Thereby each move is accompanied by the information
about who has uttered it, and towards whom was it addressed.
All the moves are recorded in the Moves part of the partici-
pant’s dialogue gameboard, as a Cons-list (stack).

Additionally, we record any move m which one has yet to

actively react to, in a hypothesis of the form Pending m . We
cannot use the Moves part of the state for this purpose, be-
cause it is meant to be static (not to be consumed). Pending
thus allows one to make the difference between a move which
is fully processed and a pending one.

Here we will provide a few examples of the rules which
are implemented in our system, and we refer our reader to
[Maraev et al., 2020] for more detailed description.

Examples
We can show how basic move-adjacency can be defined in the
example of a counter greeting preconditioned by a greeting
from the other party:

counterGreeting : (x y : DP) → HasTurn x _
Agenda as (Pending (Greet y x) (
Agenda (Cons (CounterGreet x y) as)

Another important rule accounts for pushing the content of
any received Ask move on top of the stack of questions under
discussion (QUD).

pushQUD : (q : Question) → (qs : List Question) →
(x y : DP) → Pending (Ask q x y) (
QUD qs (QUD (Cons q qs)

If the user asserts something that relates to the top QUD ,
then the QUD can be resolved and therefore removed from
the stack. The corresponding proposition p is saved as a
PendingUserFact .3 The following rule4 is an extended di-
alogue management version of the rule previously introduced
in Section 4.3.

processAssert : (a : Type) → (x : a) → (p : Prop) →
(qs : List Question) →
(dp dp1 : DP) → Pending (Assert p dp1 dp) (
QUD (Cons (Q dp a x p) qs) (
[_ :: PendingUserFact p; _ :: QUD qs]

Then, other rules will take into account the
PendingUserFact p in a system-specific way. In the
simplest case, the system may treat p as a true proposition.
(In this paper we will consider meta-level pending user facts
instead.)

Short answers are processed in a very similar way to asser-
tions:

processShort : (a : Type) → (x : a) → (p : Prop) →
(qs : List Question) → (dp dp1 : DP) →
Pending (ShortAnswer a x dp1 dp) (
QUD (Cons (Q dp a x p) qs) (
[_ :: PendingUserFact p; _ :: QUD qs]

If the system has a fact p in its database it can produce an
answer or a domain-specific clarification request depending
on whether the fact is unique and concrete or not (defined by
operators →! and →? respectively, see Maraev et al., 2020
for further details).

3For the current purposes we only remove the top QUD, but in a
more general case we can implement the policy that can potentially
resolve any QUD from the stack.

4Note the use of the single colon (:) for metavariables and the
double colon for information-state hypotheses (::).

produceAnswer :
(a : Type) → (x : a) →! (p : Prop) →
(qs : List Question) →
QUD (Cons (Q USER a x p) qs) (p _
[_ :: Agenda (ShortAnswer a x SYSTEM USER);
_ :: QUD qs;
_ :: Answered (Q USER a x p)]

4.5 Extending the dialogue manager with
grounding strategies

In this subsection we provide a sketch of basic grounding
strategies and moves related to them, which will be further
used to model laughter.

Dialogue systems deal with confidence scores from ASR
and NLU components, which reflects the uncertainty in user
queries. For simplicity we will represent the confidence
score t in on the basis of three confidence threshold lev-
els (T1 < T2), where RED would correspond to t < T1,
YELLOW to T1 < t < T2, and GREEN to T2 < t. Colour-
coded confidence scores would accompany user moves, e.g.
the Ask move such as “What time is it?” can be represented
as follows:

Ask (Q U Time t0 (IsTime t0)) U S YELLOW

Here we illustrate the possibility of extending the system
with Interactive Communication Management (ICM) moves
and grounding strategies, replicating Larsson’s [2002] ac-
count for grounding and feedback. ICM moves are used for
coordination of the common ground in dialogue, which ex-
presses, for instance, explicit signals for integrating the in-
coming information and updating the common ground (dia-
logue gameboard in our implementation). The basic type for
the ICM move is the following:

ICM level polarity content

where level corresponds to the level of grounding (contact,
perception, understanding, acceptance), polarity is either
positive or negative, and the optional value content corre-
sponds to a component of the common ground in question.
For instance, the move (ICM Per Neg None) would corre-
spond to the utterance “I didn’t understand what you said” or
“Pardon”, and the move (ICM Und Pos q) can be realised
as the utterance “You are asking me what time is it” if the
QUD q corresponds to the question from Ask move exempli-
fied above.

Next, we modify our basic pushQUD rule defined in Sec-
tion 4.4 to support different system behaviours depending on
the confidence score. In the GREEN case, question from
the user Ask move is being integrated into QUD , and ICM
move displaying positive acceptance feedback, i.e. “okay”,
(ICM Acc Pos None) is being put on the Agenda . In
the YELLOW case, system should additionally report about
positive understanding, e.g. “You want to know about time”,
so it adds (ICM Und Pos q) move on the Agenda .

pushQUDGreen : (q : Question) →
(qs : List Question) → (x y : DP) →
Pending (Ask q x y GREEN) (Agenda as (

QUD qs (
[_ :: QUD (Cons q qs);
_ :: Agenda (Cons (ICM Acc Pos None) as);]

pushQUDYellow : (q : Question) →
(qs : List Question) → (x y : DP) →
Pending (Ask q x y YELLOW) (Agenda as (
QUD qs (

[_ :: QUD (Cons q qs);
_ :: Agenda (Cons (ICM Acc Pos None)
(Cons (ICM Und Pos q) as));]

For RED confidence score, the system issues an interroga-
tive ICM query, such as “I understood you’re asking me about
the time, is that correct?”. In this case a special type of QUD
is introduced, namely a question about whether question q is
correctly understood.

icmINTConfirm : (q : Question) → (x y : DP) →
Pending (Ask q x y RED) (Agenda as (
QUD qs (
[_ :: QUD (Cons (Q Bool x

(if x then UND q
else UNDN q)) qs);

_ :: Agenda (Cons (ICM Und Int q) as)]

Processing answers related to such a type of QUD will be
done as usual. For instance, a short “yes” or “no” will be
treated here as a boolean, and depending on the answer the
context will contain either PendingUserFact (UND q) or
PendingUserFact (UNDN q).

In this sketch implementation, we do not care about confi-
dence scores for these answers, leaving it underspecified, but
further, more specific dialogue rules are possible.

Regardless of the particular answer, once the ICM question
is answered, it is removed from the QUD stack, so that to of
the QUD stack is restored to the originally asked question.
In our system, this is taken care of by the generic handling of
ShortAnswers. Thus, in the case of a positive answer to such
a query, there is nothing particular to do.

In the negative case, the ICM move about the understand-
ing that the question was not q is issued.

icmINTneg : (q : Question) → (x y : DP) →
(c : Confidence) →
PendingUserFact (UNDN q) (
Agenda as (
Agenda (Cons

(ICM Und Pos (QuestionIsNot q)) as)

How ICM moves are converted to natural language ut-
terances, depending on q , is a natural language generation
(NLG) issue. For instance,

ICM Und Pos
(QuestionIsNot

(Q U Time t0 (IsTime t0)))

can become the (rather tedious) utterance “So, you are not
asking me what time it is”, whereas more sophisticated
queries with more arguments can be resolved in shorter ut-
terance depending on the arguments that are made ground.
For instance, in a context of interaction at a food kiosk:

ICM Und Pos
(QuestionIsNot

(Q U (Prop → Prop) m0 (m0 WantOlives))

could become a simple “Sorry, let’s forget olives.”.

5 Formal treatment of certain types of
laughter

5.1 Laughter as a rejection signal
Laughter as a reaction to interrogative feedback in the case
of low confidence ASR/NLU result can be illustrated by the
following dialogue.

(8)

U: I would like to
order a vegan bean
burger.

Ask q

S: I understood you’d
like to order a beef
burger. Is that
correct?

ICM Und Int q

U: HAHAHA ShortAnswer Bool False

Here we can treat laughter as a short negative answer, sim-
ilar to “No”. In the case of interrogative ICM move, such an
answer can be processed using the icmINTneg rule defined
above.

This can be treated as a recovery strategy for different sys-
tem outputs not desired by dialogue system designers. This
approach can be extended to other cases of user feedback,
for instance, to cover the cases with higher confidence score
where the system produces ICM Und Pos q move, but this
is out of the scope of the current paper.

Returning to the more sophisticated (4), it can be handled
by our generic rules for integrating QUDs (pushQUD). For
that we need to consider polar questions as expecting an an-
swer of Prop → Prop type (see Table 1). Recalling the ex-
ample:

(4)

Journalist: (smile) Dreierkette auch ‘ne Option?
(Is the three-in-the-back also
an option?)

Manuel Neuer: fuh fuh fuh
(brief laugh)

and a type for question:
A : Type P : A → Prop

In this case,

A = Prop → Prop
P = λm.m IsOptionDreierkette

The brief laughter by Manuel Neuer can be represented as:

J fuhfuhfuhK = ShortAnswer
(Prop → Prop) (λx .Laughable x)

where the modification of the proposition, resulting in
(Laughable IsOptionDreierkette) has a very basic mean-
ing: this proposition is the laughable, without being more
specific about the laughter function. One can also consider
being more specific, simply treating laughter as a negation
(ShortAnswer (Prop → Prop) (λx .Not x)), but in general
laughter has a more nuanced meaning.

5.2 Laughter which accompanies feedback
Laughter can act as a part of ICM moves’ realisation per-
formed by natural language generation (NLG) component. It
seems to us that, in particular, ICM moves the use of laugh-
ter can be considered “safe”. For instance, ICM move of the
form (ICM Und Pos (QuestionIsNot (Q U (Prop →
Prop) m0 (m0 WantOlives))) can be realised as a natu-
ral language utterance like “Okay, let’s forget olives, hehe”,
whereas laughter is used as a smoothing device to mitigate
the awkwardness of system failure. Larsson [2002] often
included an apology “Sorry” in some of the ICM moves,
e.g. “Sorry, I didn’t understand that”. With some possible
caveats, we can sometimes include slight laughter in such
moves, especially if a system is getting a bit repetitive and
produces (ICM Und Neg) too often. Considering the evi-
dence for laughter often accompanying apology (as a separate
dialogue act) presented in Section 3.2, this can mimic natural
behaviour in dialogue.

6 Discussion and future work
In this paper we have shown how some types of laughter can
be accounted for in task-oriented spoken dialogue system. We
proposed our own proof-theoretic architecture of a dialogue
manager based on KoS framework and extended it with some
grounding strategies. Based on this, we have shown how cer-
tain types of laughter, can be processed within the dialogue
manager and natural language generator, namely: laughter as
a negative feedback, laughter as a negative answer to a po-
lar question and laughter as a signal accompanying system
feedback.

In the following subsections we discuss several issues re-
lated to laughter in spoken dialogue systems, but only merely
touching the main subject of the paper.

6.1 Humour
We start with humour, which is usually considered in relation
to jokes generated by dialogue system, but here we present
more subtle incongruities related to humour in task-oriented
dialogue.

(9) DEC:28_NM_loc2
17 Caller okay so it starts with a
18 Caller L
19 Operator L?
20 Caller as in london
21 Operator yes
22 Caller A as in america
23 Operator america
24 Caller er U
25 Caller as in er ((pause: 1.2s))
26 Caller er under
27 Caller <laugh>
28 Operator under yes

In (9) the caller experiences issues with coming up with pho-
netic spellings for certain words. The first laugh (line 27)
deserves attention, as it seems that it reflects on both pleas-
ant incongruity and social one (smoothing), according to the
taxonomy of [Mazzocconi, 2019]. The pleasant incongruity

is due to the fact that the phonetic spelling of “U” as in “un-
der” is incongruous with the preceding ones: a preposition
vs. proper nouns. The way to spell things phonetically is
typically culturally specific, with the most typical cases of
cities or countries. Stereotypes and conversational conven-
tions can be expressed with the formal notions of enthymemes
and topoi, following the work of Breitholtz [2020] on rea-
soning in conversation. Breitholtz and Maraev [2019] used
these notions to analyse conversational humour as well as
canned jokes, and we find it potentially helpful to be inte-
grated into our framework in order to account for humour in
dialogue systems. Dybala et al. [2010] emphasises the impor-
tance of the “two-stage” approach to humour in dialogue sys-
tems, where the system tracks the emotional state of the user,
produces humour as a reaction to certain states and analyses
user’s further emotional reaction.

6.2 Surprise
Intuitively, laughter is related to events that are not expected
in interaction. One of the ways to establish some degree of
natural behaviour for a dialogue system would be to react sin-
cerely to these kinds of surprising events. A possible measure
for a system’s surprisal is how confused it is by the user in-
put. A natural measure for this from information theory is
perplexity, a probability-based metric. For N words in an
evaluation set W = w1w2 . . . wN , the average perplexity per
word is computed as follows:

PP (W) = N

√√√√ N∏
i=1

1

P (wi | w1 . . . wi−1)
(1)

Given a language model, we can employ a threshold de-
fined by perplexity which the system can use to act as being
surprised, e.g. by saying “Ha-ha, I did not expect this!”

Similarly, perplexity can be inferred from tracking a dia-
logue state in a Dialogue State Tracking task [Mrkšić et al.,
2017], which is a common task in statistical approaches to di-
alogue system. Or, following Noble and Maraev [2021], the
RNN trained on a large dialogue corpus as a representation of
dialogue context can be used to calculate perplexity.

Laughter as a reaction of surprise can relate to the levels
of feedback, for example, a user surprised by a pragmatically
incoherent system’s reply can laugh (Section 5.1). But here
surprise is taken in isolation, as a measure on its own right.

6.3 Awkwardness and time-saving
In (9), “under” is produced after a long pause (l.25) and
therefore indicates awkwardness in producing the phonetic
spelling made the operator wait—therefore making the situ-
ation uncomfortable to the caller, so laughter was used for
smoothing it.

In the follow-up excerpt (10) from the same dialogue,
user’s awkwardness continues and she accompanies it with
laughter. Firstly, she laughs (l.139) demonstrating that she
has given up finding any phonetic spelling for “K”, releasing
the turn and allowing the operator to carry on. Her second
laugh smooths her slight embarrassment after the situation
was resolved by the operator.

(10) DEC:28_NM_loc2
134 Caller O for oslo
135 Operator O for oslo
136 Caller again O for oslo
137 Operator O for oslo
138 Caller and K for er ((pause: 1.6s))
139 Caller <laugh>
140 Operator as in king?
141 Caller k- king <laugh> yeah
142 Operator yes
143 Caller thank you
144 Operator that’s it?
145 Caller that’s it

We can hypothesise that in a dialogue system these exam-
ples can be handled as follows. For a system, there are op-
erations which the developer knows are going to take time
due to technical constraints, but are expected to be immedi-
ate by the user. In this case, a system can produce a similar
behaviour to the one in (9) (l.25–27): “er. . . (pause) [comes
up with an answer] <laugh>”. A system can detect the pat-
terns of filled pause + <laugh> from the user and treat them
as turn-release cues. It can be a signal of either that there is
something that confused the user, or that she genuinely could
not come up with an answer due to certain difficulties. The
downplayer dialogue act (e.g. “don’t worry”) or laughter in
response also can be appropriate as system feedback in such
a situation. We consider these ideas as a subject for further
empirical investigations.

Laughter related to smoothing retrieval difficulties can be
indicative. Consider the case of language tutoring. In the
Anki “flashcard” app, the system provides users with a word
in one language on the front side of the card and the user
should provide a translation. The user then gets the correct
response from the back of the card and evaluates her own
response (was this card Hard, Good or Easy to recall). If
we consider making a similar conversational app, indications
of retrieval issues—filled pauses (“er em. . . ”) and follow-up
smoothing by laughter—can lead to the decision to flag this
card as “Hard” and provide corresponding feedback (11).

(11)

S What is the Swedish for donkey?
U er em . . . åsna?.. <laugh>
S Yes, that was tough, but it is correct!

(system marks the card as “Hard”)

6.4 Approaches to evaluation
Each of the aforementioned improvements has to be a sub-
ject for evaluation within the dialogue system. We expect to
see that these improvements will be reflected in the following
evaluation criteria.

Some of the improvements would fall into an objective
checklist-style criteria, like being able to understand laugh-
ter as negative feedback, or as a signal of surprise. The same
goes for system’s laughter as an appropriate reaction to con-
versational humour.

Another portion of the features can be evaluated only sub-
jectively, for example, it is a question of user preference
whether it is okay for a system to accompany asking for a
favour (e.g. “Let’s start over!”) with laughter. For this pur-

pose, we can employ subjective evaluation methods such as
more task-oriented SASSI [Hone and Graham, 2000] or the
more chatterbot-oriented methodology proposed by Dybala
et al. [2009], which was used for humour-equipped chatbots.
We optimistically expect that characteristics such as natural-
ity and likeability would increase and annoyance would de-
crease.

Acknowledgments
The research reported in this paper was supported by grant
2014-39 from the Swedish Research Council, which funds
the Centre for Linguistic Theory and Studies in Probabil-
ity (CLASP) in the Department of Philosophy, Linguistics,
and Theory of Science at the University of Gothenburg. In
addition, we would like to thank Staffan Larsson, Jonathan
Ginzburg and our anonymous reviewers for their useful com-
ments.

References
Andreas Abel and Jean-Philippe Bernardy. A unified view of

modalities in type systems. Proceedings of the ACM on
Programming Languages, 4(ICFP), 2020.

James F Allen, Lenhart K Schubert, George Ferguson, Peter
Heeman, Chung Hee Hwang, Tsuneaki Kato, Marc Light,
Nathaniel Martin, Bradford Miller, Massimo Poesio, et al.
The TRAINS project: A case study in building a conver-
sational planning agent. Journal of Experimental & Theo-
retical Artificial Intelligence, 7(1):7–48, 1995.

Jens Allwood. An activity based approach to pragmatics.
1995.

Robert Atkey. Syntax and semantics of quantitative type the-
ory. In Proceedings of the 33rd Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS 2018, Oxford,
UK, pages 56–65, 2018.

Christian Becker-Asano and Hiroshi Ishiguro. Laughter in
social robotics-no laughing matter. In Intl. Workshop on
Social Intelligence Design, pages 287–300. Citeseer, 2009.

Anastasia Bondarenko, Christine Howes, and Staffan Lars-
son. Directory enquiries corpus, Feb 2020.

Ivan Bratko. Prolog programming for artificial intelligence.
Pearson education, 2001.

Ellen Breitholtz and Vladislav Maraev. How to put an ele-
phant in the title: Modeling humorous incongruity with
topoi. In Proceedings of the 23rd Workshop on the Seman-
tics and Pragmatics of Dialogue - Full Papers, London,
United Kingdom, September 2019. SEMDIAL.

Ellen Breitholtz. Enthymemes and Topoi in Dialogue: The
Use of Common Sense Reasoning in Conversation. Brill,
Leiden, The Netherlands, 2020.

Herbert H Clark. Using language. Cambridge university
press, 1996.

Yu Ding, Ken Prepin, Jing Huang, Catherine Pelachaud, and
Thierry Artières. Laughter animation synthesis. In Proc.
AAMS 2014, pages 773–780. International Foundation for
Autonomous Agents and Multiagent Systems, 2014.

Lucas Dixon, Alan Smaill, and Tracy Tsang. Plans, actions
and dialogues using linear logic. Journal of Logic, Lan-
guage and Information, 18(2):251–289, 2009.

Pawel Dybala, Michal Ptaszynski, Rafal Rzepka, and Kenji
Araki. Subjective, but ot worthless-on-linguistic features
of chatterbot evaluations. In 6th IJCAI Workshop on
Knowledge and Reasoning in Practical Dialogue Systems,
page 87. Citeseer, 2009.

Pawel Dybala, Michal Ptaszynski, Rafal Rzepka, and Kenji
Araki. Extending the chain: humor and emotions in human
computer interaction. International Journal of Computa-
tional Linguistics Research, 1(3):116–125, 2010.

Kevin El Haddad, Sandeep Nallan Chakravarthula, and James
Kennedy. Smile and laugh dynamics in naturalistic dyadic
interactions: Intensity levels, sequences and roles. In
2019 International Conference on Multimodal Interaction,
pages 259–263, 2019.

Jonathan Ginzburg, Chiara Mazzocconi, and Ye Tian. Laugh-
ter as language. Glossa: a journal of general linguistics,
5(1), 2020.

Jonathan Ginzburg. The Interactive Stance. Oxford Univer-
sity Press, 2012.

J.-Y. Girard. Linear Logic: its syntax and semantics, page
1–42. London Mathematical Society Lecture Note Series.
Cambridge University Press, 1995.

Phillip Glenn. Laughter in Interaction. Cambridge University
Press, Cambridge, UK, 2003.

Kate S Hone and Robert Graham. Towards a tool for the
subjective assessment of speech system interfaces (sassi).
2000.

Christine Howes, Anastasia Bondarenko, and Staffan Lars-
son. Good call! Grounding in a Directory Enquiries Cor-
pus. In Proceedings of the 23rd Workshop on the Semantics
and Pragmatics of Dialogue, London, United Kingdom,
sep 2019. SEMDIAL.

Gail Jefferson. On the organization of laughter in talk about
troubles. In Structures of Social Action: Studies in Con-
versation Analysis, pages 346–369. 1984.

Kristiina Jokinen. Constructive dialogue modelling: Speech
interaction and rational agents, volume 10. John Wiley &
Sons, 2009.

D Jurafsky, E Shriberg, and D Biasca. Switchboard dialog
act corpus. International Computer Science Inst. Berkeley
CA, Tech. Rep, 1997.

Staffan Larsson. Issue-based dialogue management. PhD
thesis, University of Gothenburg, 2002.

Vladislav Maraev, Jean-Philippe Bernardy, and Jonathan
Ginzburg. Dialogue management with linear logic:
the role of metavariables in questions and clarifications.
Traitement Automatique des Langues (TAL), 61(3):43–67,
2020.

Chris Martens. Programming Interactive Worlds with Linear
Logic. PhD thesis, Carnegie Mellon University Pittsburgh,
PA, 2015.

Chiara Mazzocconi. Laughter in interaction: semantics,
pragmatics and child development. PhD thesis, Université
de Paris, 2019.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Tsung-Hsien Wen,
Blaise Thomson, and Steve Young. Neural belief tracker:
Data-driven dialogue state tracking. In Proceedings of the
55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1777–1788,
2017.

Anton Nijholt. Embodied agents: A new impetus to humor
research. In The April Fools Day Workshop on Compu-
tational Humour, volume 20, pages 101–111. In: Proc.
Twente Workshop on Language Technology, 2002.

Bill Noble and Vladislav Maraev. Large-scale text pre-
training helps with dialogue act recognition, but not with-
out fine-tuning. In Proceedings of the 14th International
Conference on Computational Semantics - Short Papers,
Groningen, Netherlands, 2021.

Magalie Ochs and Catherine Pelachaud. Socially aware
virtual characters: The social signal of smiles [so-
cial sciences]. IEEE Signal Processing Magazine,
30(2):128–132, Mar 2013.

Cécile Petitjean and Esther González-Martínez. Laughing
and smiling to manage trouble in french-language class-
room interaction. Classroom Discourse, 6(2):89–106,
2015.

Fernando Poyatos. Paralanguage: A linguistic and interdis-
ciplinary approach to interactive speech and sounds, vol-
ume 92. John Benjamins Publishing, 1993.

Joshua Raclaw and Cecilia E Ford. Laughter and the man-
agement of divergent positions in peer review interactions.
Journal of Pragmatics, 113:1–15, 2017.

Verena Rieser and Oliver Lemon. Reinforcement learning
for adaptive dialogue systems: a data-driven methodology
for dialogue management and natural language genera-
tion. Springer Science & Business Media, 2011.

Emanuel A Schegloff and Harvey Sacks. Opening up clos-
ings. Semiotica, 8(4):289–327, 1973.

Jérôme Urbain, Radoslaw Niewiadomski, Elisabetta Bevac-
qua, Thierry Dutoit, Alexis Moinet, Catherine Pelachaud,
Benjamin Picart, Joëlle Tilmanne, and Johannes Wagner.
Avlaughtercycle. J. Multimodal User Interfaces, 4(1):47–
58, 2010.

Julia Vettin and Dietmar Todt. Laughter in conversation: Fea-
tures of occurrence and acoustic structure. Journal of Non-
verbal Behavior, 28(2):93–115, 2004.

Jason D Williams, Kavosh Asadi, and Geoffrey Zweig. Hy-
brid code networks: practical and efficient end-to-end di-
alog control with supervised and reinforcement learning.
arXiv preprint arXiv:1702.03274, 2017.

Steve Young, Milica Gašić, Simon Keizer, François Mairesse,
Jost Schatzmann, Blaise Thomson, and Kai Yu. The hid-
den information state model: A practical framework for
POMDP-based spoken dialogue management. Computer
Speech & Language, 24(2):150–174, 2010.

	Introduction
	Background
	Dialogue
	Laughter

	Types of laughter
	Laughter as a component of grounding
	Contact and perception levels
	Understanding level
	Reaction (consider for acceptance) level

	Laughter and intrusion

	Dialogue manager architecture
	Linear rules and proof search
	Questions and answers
	Representation of questions with metavariables
	Dialogue management
	Examples

	Extending the dialogue manager with grounding strategies

	Formal treatment of certain types of laughter
	Laughter as a rejection signal
	Laughter which accompanies feedback

	Discussion and future work
	Humour
	Surprise
	Awkwardness and time-saving
	Approaches to evaluation

