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Abstract

This paper describes an experiment that collects
human dialogues about predictions of partici-
pants’ personality traits on the basis of their
music preferences, and presents preliminary re-
sults. This type of data can inform the design of
explanatory dialogue systems, and the method
can straightforwardly be adapted to other do-
mains and statistical models.

1 Introduction

When machine-learning models inform high-stakes
decisions, such as in healthcare, it is important to
understand what the models’ estimates are based
on. Under the umbrella term “explainable AI”
(XAI), various techniques have been developed for
explaining estimates from models that are other-
wise considered opaque, such as deep neural net-
works. One of the most popular techniques in-
volves constructing a simpler, linear approximation
of the prediction to be explained (Ribeiro et al.,
2016). However, most work in XAl has primarily
targeted machine-learning experts, has not assessed
explainability in naturalistic settings, and has not
accounted for the interactive nature of human ex-
planations (Miller, 2019; Arya et al., 2019; Weld
and Bansal, 2018; Simkute et al., 2021). Specifi-
cally, Lakkaraju et al. (2022) report that users of
current explanation techniques lack interactivity
and conversational possibilities.

This paper presents a method for collecting hu-
man dialogues revolving around judgements by
statistical models, as a basis for informing the de-
sign of explanatory dialogue systems and yield-
ing requirements for XAI techniques. In a sim-
ilar vein, previous work has collected dialogues
where the explainer is a dialogue system (Kuzba
and Biecek, 2020) or a researcher acting as the sys-
tem (Hernandez-Bocanegra and Ziegler, 2021), as
well as dialogues that do not specifically involve
statistical estimates (Moore and Paris, 1993; Mad-
umal et al., 2019). As far as we are aware, no
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previous work has collected explanatory dialogues
revolving around model predictions to inform the
design of XAI, with human participants/informants
in both roles.

2 Experiment

Our experiment collects human explanatory dia-
logues about a model’s predictions of personal-
ity traits from music preferences. Firstly, partici-
pants listen to 30-second excerpts of 10 tracks and
rate them on a 4-point hedonic scale (like/dislike
slightly/very much). In the second part, partici-
pants are paired up with each other and are ran-
domly assigned the role of either explainee or ex-
plainer. They then chat with each other using an
online text chat interface (see figure 1). Explainers,
but not explainees, are given access to prediction
results (estimated personality traits), information
about the statistical model and what the personality
traits mean, global and local feature contribution
plots, and feature values (plots of the explainee’s
music preferences), as well as an interactive explo-
ration enabling the explainer to make predictions
for hypothetical feature values.

Since participants are paired up with each other,
we avoid known issues of bias when using confed-
erates (Kuhlen and Brennan, 2013), enabling an
open-ended investigation. A high level of data pro-
tection is achieved by not asking participants about
their names or contact information, not logging in-
formation that could link data to persons, and by
screening collected utterances before storing them.

Tracks are featurised on the basis of 10 au-
dio properties (energy, loudness etc.), and an ex-
plainee’s ratings are aggregated into a fixed-size
vector using weighted averaging. For each big-
five personality trait (John et al., 1999), we train
a logistic regression model to predict polarity (e.g.
introverted or extraverted). As training data, we use
listening histories from Last.fm and Spotify, audio
features extracted from Spotify API, and psycho-
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Results
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The figure shows the test taker's estimated personality traits in terms of so called Big Five

factors, on a scale from -5 (lowest) to 5 (highest), where 0 is the median (most typical)

value. For explanations, see the menu to the left.

while your score for neuroticism

Figure 1: Screenshot of explainer’s main view during chat. Explainees only see a chat window (similar to right-most
part of explainer’s view). Neither the personality prediction or the chat utterances are authentic.

metric test results from the MyPersonality dataset,
assembled by Melchiorre and Schedl (2020). Ex-
plainers see the log odds of the predictions on a
scale from -5 to 5 (see figure 1).

3 Preliminary results

Pilots have been performed with 6 colleagues
from the department as participants, resulting in 3
collected dialogues (303 utterances in total). The
data encompasses a range of topics including the
meaning of labels (“what does agreeableness en-
tail?””), validity of predictions (“‘conscientiousness
is a bit too low I think™), trust (“it is hard to trust
these ratings nevertheless”), causation (“I wonder
if music influences the personality or if it’s only the
other way”’) and the activity as such (“It’s a really
fun experiment”), as well as different dialogue
strategies, exemplified by the two excerpts below
(A=explainer, B=explainee):

ey

A: in terms of the “big five” factors

A: apparently, you are very open

A: almost 5 (out of -5 to 5 where O is the
median)

B: It’s interesting, I wonder what song
would give this trait

A: well I actually can tell you something
about that I think

A: not which song in particular, but how
openness relates to features of the music

B: Oh great I'm interested

2)

A: um apparently accousticness is positively
correlated with neuroticism

B: Haha I’'m almost surprised I scored low
And openness as well?

A: openness is the opposite with respect to
acousticness

A:  so I guess if you want to be more open

and less neurotic the answer is to develop
a preference for acoustic music

These short excerpts demonstrate that explana-
tions given by people for the results provided by the
statistical model do not necessarily adhere to the
types of explanations usually considered by XAL
In the first excerpt, the explainee seems to target
an examplar-based explanation; the explainer of-
fers a correlational explanation instead, which the
explainee accepts. The second excerpt exempli-
fies a logically incomplete explanation (Breitholtz,
2020), drawing on a shared assumption which is
not explicitly stated in the dialogues (that being
open and non-neurotic is desirable) and that would
not necessarily be available to an Al

4 Future work

In future work, we plan to collect more dialogues
with the same setup and perform an analysis of the
data. It could also be useful to focus on simpler
models — e.g. rule lists or small decision trees —
as well as more opaque models such as deep neu-
ral nets, with or without the support of a simpler
explanation model.
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