
Dynamic Syntax in Type Theory with Records

Robin Cooper and Staffan Larsson
Centre for Linguistic Theory and Studies in Probability (CLASP)

Dept. of Philosophy, Linguistics and Theory of Science
University of Gothenburg

This abstract sketches how part of Dynamic Syntax (DS, Kempson et al., 2001) can be rendered
in TTR, a Type Theory with Records (Cooper, 2012, in prep; Cooper and Ginzburg, 2015) . We
explore this as an alternative to DS-TTR (Eshghi, 2015) which adds TTR interpretations to DS
but does not code the whole of DS in TTR. DS tree nodes are modelled as records of the type:

(1)
[

type : Type
cont : type

]

However, tree nodes may also have daughters. Therefore we define a (basic, recursive) type
Tree such that

(2) a:Tree iff a:

 type : Type
cont : type
daughters : Tree*

Here ‘Tree*’ denotes the type of strings of trees. The ‘*’ is related to the Kleene-*. We will
use ‘ε’ to represent the empty string.
The TTR type for the tree for John arrived is shown in (3).

(3)

type=t : Type
cont : type

daughters :

 type=e : Type
cont=john ′ : type
daughters=ε : Tree*

 _

 type=e→ t : Type
cont=λx :e . arrive(x) : type
daughters=ε : Tree*

This can be rendered more diagrammatically as in (4).

(4)
[

type=t : Type
cont : type

]

[
type=e : Type
cont=john ′ : type

] [
type=e→ t : Type
cont=λx :e . arrive(x) : type

]

Note that this represents a tree type, not a tree (cf. underspecified trees in DS). A record type
is fully specified iff all its fields are manifest (in TTR notation, a manifest field in a record is
written ` = v : T where ` is a label, v is a value of type T). It is underspecified otherwise. For
example, the type in (4) is underspecified with respect to the path ‘cont’.

1

Consider the DS lexical entry in (5).

(5)

44

DS, however, currently incorporates no notion
of illocutionary force or dialogue act type, as it is
assumed that derivation of such information is not
linguistically determined. In the case of SUs, it
has been assumed that thegrammaritself provides
adequate means of continuing/taking over some-
body else’s utterance, and that this does notneces-
sarily involve strategic reflection or fully-formed
intentions as to what function the utterance should
perform: this provides the possibility for speakers
to ‘blurt out’ utterances without necessarily having
any specific plans/intentions in mind, and for hear-
ers to respond without reflection as to the speaker’s
plan. But, as pointed out in (Kempson et al., 2007;
Gargett et al., 2009), this is not an in-principle ob-
jection to the specification of speech act informa-
tion as part of the representation derived by the
parse of an utterance, as DS provides mechanisms
for allowing the inclusion of optional inferred in-
formation. We present here an extension to DS
which allows it to include such information explic-
itly and draw the distinctions relevant for SUs.

We also show how this extension is motivated
by the resolution of theSplit Turn Taking Puzzle
(STTP). This is a version of Ginzburg (1997)’s
Turn Taking Puzzle applied to SUs, where it ap-
pears that distinct empirical results are obtained:
given a SU split between two people, the possible
interpretations of a subsequent “Why?” depend
not on the most recent speaker, but on who can be
taken as the agent of the speech act performed –
which may be distinct from the notion of ‘speaker’
tracked by indexical pronouns likeI andmy.

2 Combining Dynamic Syntax with TTR

2.1 Dynamic Syntax (DS)

DS combines word-by-word incrementality with
context-dependent, goal-directed parsing defined
over partial trees. Importantly, these trees are se-
mantic objects, rather than reflecting syntax or
word order. Parsing in DS relies on the execu-
tion of licensedactions, as incorporated in lexical
entries (as in (3) below); such actions resolve out-
standing requirements (here,?Ty(e)) to decorate
the tree with information about semantic typeTy
and content (formula)Fo:

(3)

john:
IF ?Ty(e)
THEN put(Ty(e))

put(Fo(john′))
ELSE abort

(4)

“John arrived”7−→ ♦, ?Ty(t)

Ty(e),
Fo(john′)

Ty(e → t),
λx.arrive(x)

Application of lexical actions is interspersed with
the execution of computational rules which pro-
vide the predictive element in the parse and pro-
vide the compositional combinatorics. For exam-
ple, eventual type deduction and function appli-
cation is achieved by means of the rule ofElim-
ination (5). This derives the value of a mother
node’s semantic typeTy and contentFo from
that of its daughters, in (4) providing the values
Ty(t), Fo(arrived(john)) at the top node:

(5)

Elimination:
IF ?Ty(T1),

↓0 (Ty(T2), Fo(α))
↓1 (Ty(T2 → T1), Fo(β))

THEN put(Ty(T1))
put(Fo(β(α)))

ELSE abort

Grammaticality is then defined in terms of a re-
sulting complete (requirement-free) tree. Gener-
ation is defined in terms of parsing, and there-
fore also functions with partial trees, uses the
same action definitions, and has the same context-
dependence, incrementality and predictivity.

DS is thus well-placed to account for SUs:
equal incrementality in parsing and generation,
and the use of the same partial tree representations,
allows the successful processing of “interruptive”
SUs with speaker changes at any point. Asgoal
trees(planned messages driving generation) may
also be partial, utterances may be produced be-
fore a total propositional message has been con-
structed, and completions may be analysed with-
out necessarily involving “guessing”. The parser-
turned-producer has just to access a word that
seems to them an appropriate completion, with-
outnecessarilyconsidering whether it matches the
previous speaker’s intention.

DS doesn’t incorporate a notion of dialogue act
type (in contrast to e.g. Ginzburg et al. (2003)) as
it is assumed that the linguistically provided infor-
mation is highly underspecified, namely just an in-
dication of sentence mood as declarative, interrog-
ative, imperative.2 However, as the DS formalism

2Such specifications are currently encoded as features
translatable into use-neutral procedural instructions, unless
there are “grammaticised” associations between moods and
speech acts, an empirical issue to be decided on a language-
by-language basis.

We might think of (5) as a kind of update rule which refines a type. It might be expressed as
something like (6).

(6) If Ti =
[

type=e : Type
cont : type

]
,

then set Ti+1 to be
[

type=e : Type
cont=john′ : type

]

We could think of (6) as a type rewrite rule and express it in symbols as in (7).

(7)
[

type=e : Type
cont : type

]
⇒

[
type=e : Type
cont=john′ : type

]

This rewrite rule is a refinement since the type to the right of the arrow is a subtype of the type
to the left. Any monotonic update would be a type refinement of this kind.
An alternative would be to introduce TTR-style content to the lexical entry for John as in (8).

(8)
[

type=
[
x : Ind

]
: Type

cont : type

]
⇒ type=

[
x : Ind

]
: Type

cont=
[
x=john

]
: type

In (9), we see the tree type for John arrived with TTR content added.

(9)
 type=RecType : Type

cont=
[

x=john : Ind
p : arrive(x)

]
: type

 type=
[
x : Ind

]
: Type

cont=
[
x=john

]
: type

 type=(
[
x : Ind

]
→RecType) : Type

cont=λr:
[
x : Ind

]
.
[

x=r.x : Ind
p : arrive(x)

]
: type

In the presentation, we will go into some more detail about the above, and also show how
contexts and indexical pronouns can be accounted for in TTR-DS. In particular we will explore
how the use of tree types will enable us to model DS trees with unfixed nodes using a notion
of component in a record which may be embedded in a record to any arbitrary depth. We will
also give a basic introduction to TTR.

2

References
Cooper, Robin and Ginzburg, Jonathan 2015. Type theory with records for natural language

semantics. In Lappin, Shalom and Fox, Chris, editors 2015, The Handbook of Contemporary
Semantic Theory. Wiley-Blackwell, second edition. 375–407.

Cooper, Robin 2012. Type theory and semantics in flux. In Kempson, Ruth; Asher, Nicholas;
and Fernando, Tim, editors 2012, Handbook of the Philosophy of Science, volume 14: Phi-
losophy of Linguistics. Elsevier BV. General editors: Dov M. Gabbay, Paul Thagard and
John Woods.

Cooper, Robin prep. Type theory and language: from perception to linguistic communica-
tion. Draft of book chapters available from https://sites.google.com/site/
typetheorywithrecords/drafts.

Eshghi, Arash 2015. DS-TTR: An incremental, semantic, contextual parser for dialogue. SEM-
DIAL 2015 goDIAL 172.

Kempson, Ruth; Meyer-Viol, Wilfried; and Gabbay, Dov 2001. Dynamic syntax: the flow of
language understanding. Blackwell.

3

