SEMANTIC PROCESSING OF (REAL-LIFE) QUESTIONS AND ANSWERS

Maria Boritchev, Maxime Amblard

October 9, 2019

Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

A1 Charlie is a unicorn.

A1 Charlie is a unicorn.

→ Semantics: compositionality

- A₁ Charlie is a unicorn.
- B_2 She prefers coffee or tea?

→ Semantics: compositionality

- A₁ Charlie is a unicorn.
- B_2 She prefers coffee or tea?

- → Semantics: compositionality
- → Context: dynamicity

- A₁ Charlie is a unicorn.
- B₂ She prefers coffee or tea?
- A₃ Yes.

- → Semantics: compositionality
- → Context: dynamicity

- A₁ Charlie is a unicorn.
- B₂ She prefers coffee or tea?
- A₃ Yes.

- → Semantics: compositionality
- → Context: dynamicity
- → Comprehension: logic

- A_1 When will you guys get off?
- B₂ My last exam is like...I don't know, maybe on Monday or on Tuesday...

Saarbrücken Corpus of Spoken English

- A_1 When will you guys get off?
- B₂ My last exam is like...I don't know, maybe on Monday or on Tuesday...

Saarbrücken Corpus of Spoken English

We want:

- A formal model for semantics of dialogue (**logical**, **compositional**, **dynamic**)
- For this model to behave well on non-controlled data (lexicality, flexibility)

Semantic processing

Real-life settings

Building bridges

SEMANTIC PROCESSING

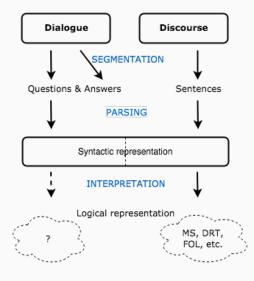


FIGURE – The big picture.

Montague Semantics

Montague Semantics

Dynamicity?

Montague Semantics DRT

Dynamicity?

Montague Semantics DRT

Dynamicity? Computability?

Montague Semantics DRT KoS

Dynamicity? Computability?

Montague Semantics DRT KoS

Dynamicity? Computability? Lexicality? Montague Semantics DRT KoS ML, NN Dynamicity? Computability? Lexicality? Montague Semantics DRT KoS ML, NN Dynamicity? Computability? Lexicality? Data? Montague Semantics DRT KoS ML, NN Inquisitive Semantics Dynamicity? Computability? Lexicality? Data?

Montague Semantics	Dynamicity?
DRT	Computability?
KoS	Lexicality?
ML, NN	Data?
Inquisitive Semantics	Linguistic interpretation?

Montague Semantics	Dynamicity?
DRT	Computability?
KoS	Lexicality?
ML, NN	Data?
Inquisitive Semantics	Linguistic interpretation?
Event Semantics	

Montague Semantics	Dynamicity?
DRT	Computability?
KoS	Lexicality?
ML, NN	Data?
Inquisitive Semantics	Linguistic interpretation?
Event Semantics	Why not?

EVENT SEMANTICS [CHAMPOLLION, 2011]

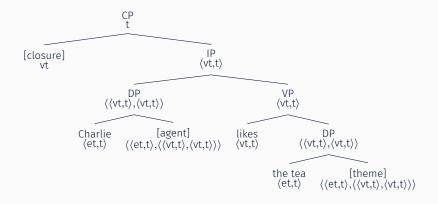


FIGURE - "Charlie likes the tea"

[Charlie likes the tea]

$$= \left(\left(\left[\left[\mathsf{agent} \right] \right] \left[\mathsf{Charlie} \right] \right) \left(\left(\left[\left[\mathsf{theme} \right] \right] \left(\left[\mathsf{the} \right] \left[\mathsf{tea} \right] \right) \right) \left[\mathsf{likes} \right] \right) \right) \left[\left[\mathsf{closure} \right] \right] \right)$$

 $= \exists x [tea(x) \land \exists e [like(e) \land agent(e) = charlie \land theme(e) = x]]$

Intuition: require to fill in missing information

Wh-words: what, when, where, who, whom, which, whose, why, how

WH-WORD	SEMANTIC ROLE
Who	Agent
Whom	Theme
Whose	Owner
Where	Location
Why	Reason
When	Temporality
What + focus phrase	role(focus phrase)
Which + focus phrase	role (focus phrase)
How	Characteristic

[Charlie likes the tea]

 $= \exists x [tea(x) \land \exists e [like(e) \land agent(e) = charlie \land theme(e) = x]]$

[Charlie likes the tea]

 $= \exists x \ [\texttt{tea}(x) \land \exists e \ [\texttt{like}(e) \land \texttt{agent}(e) = \texttt{charlie} \land \texttt{theme}(e) = x]]$

[[Who likes tea?]]

 $= \lambda w. \exists x [tea(x) \land \exists e [like(e) \land agent(e) = w \land theme(e) = x]]$

[[Charlie likes the tea]] $= \exists x [tea(x) \land \exists e [like(e) \land agent(e) = charlie \land theme(e) = x]]$ [[Who likes tea?]] $= \lambda w. \exists x [tea(x) \land \exists e [like(e) \land agent(e) = w \land theme(e) = x]]$

[Where does Charlie live?]

 $= \lambda w$. $\exists e [live(e) \land agent(e) = Charlie \land location(e) = w]$

A1 Does Charlie like the tea?B2 Yes

 $A_1\,$ Does Charlie like the tea? $B_2'\,$ No

A1 Does Charlie like the tea?B2 Yes

 $[\![B_2]\!] [\![decl(A_1)]\!]$

- $= \left[\!\left[B_2 \right]\!\right] \left[\!\left[\text{Charlie likes the tea} \right]\!\right]$
- $= (\lambda P.P)$ [[Charlie likes the tea]]
- = [[Charlie likes the tea]]

 $A_1\,$ Does Charlie like the tea? $B_2'\,$ No

A1 Does Charlie like the tea?B2 Yes

 A_1 Does Charlie like the tea? $B_2^\prime\,$ No

$[\![B_2]\!] [\![decl(A_1)]\!]$

- $= \left[\!\left[B_2 \right]\!\right] \left[\!\left[\text{Charlie likes the tea} \right]\!\right]$
- $= (\lambda P.P)$ [Charlie likes the tea]
- = [[Charlie likes the tea]]

 $[\![B_2']\!] [\![decl(A_1)]\!]$

- $= \left[\!\left[B_2 \right]\!\right] \left[\!\left[\text{Charlie likes the tea} \right]\!\right]$
- $= (\lambda \mathsf{P. not P})$ [Charlie likes the tea]
- = [[Charlie doesn't like tea]]

CONTINUATION-BASED DYNAMIC SEMANTICS [DE GROOTE, 2006]

- **Types:** individual/entity *ι*
 - proposition o
 - context γ

CONTINUATION-BASED DYNAMIC SEMANTICS [DE GROOTE, 2006]

- **Types:** individual/entity *ι*
 - proposition o
 - context γ

Jane loves Mary.

 $\lambda \textbf{ek.love } j \mathrel{m} \wedge \textbf{k}(m :: j :: \textbf{e})$

е	γ
k	$\gamma \to \mathrm{O}$
j,m	ι
love	$\iota \rightarrow \iota \rightarrow 0$

```
SYNT SEM realize
    like (the tea) Charlie : S;
In ABS:
   like (the tea) Charlie : S
Interpreted by SYNT in S FORM as:
   Charlie + (like + (the + tea)) : string
Interpreted by SEM in L_FORM as:
   Lambda e k. Ex x. k (x @ (c @ e)) ((tea x) &
   (like c x)) : g \Rightarrow ((g \Rightarrow (o \Rightarrow o)) \Rightarrow o)
```

REAL-LIFE SETTINGS

English Saarbrücken Corpus of Spoken English (SCoSE) Spanish CallFriend corpus Dutch Spoken Dutch Corpus (CGN) French Traitement de Corpus Oraux en Français (TCOF) Italian Corpus del parlato italiano (API) Chinese PolyU Corpus of Spoken Chinese

	QUESTIONS	ANSWERS	
Form	Yes/No, Wh, Disjunctive-Inclusive, Disjunctive-Exclusive, Auxiliary-Deontic, Auxiliary-Epistemic	Yes/No, Wh, Uncertain, Unknown	
Function	Completion Suggestion, Phatic, Ask_Confirmation, Ask_Feature, Ask_Performance, Reported Speech (RS)	Refuse, Accept, Phatic, Give_Confirmation, Give_Uncertainty, Give_Unknown, Reported Speech (RS), Give_Feature, Perform, NONE	

	QUESTIONS	ANSWERS	
Form	Yes/No, Wh, Disjunctive-Inclusive, Disjunctive-Exclusive, Auxiliary-Deontic, Auxiliary-Epistemic	Yes/No, Wh, Uncertain, Unknown	
Function	Completion Suggestion, Phatic, Ask_Confirmation, Ask_Feature, Ask_Performance, Reported Speech (RS)	Refuse, Accept, Phatic, Give_Confirmation, Give_Uncertainty, Give_Unknown, Reported Speech (RS), Give_Feature, Perform, NONE	

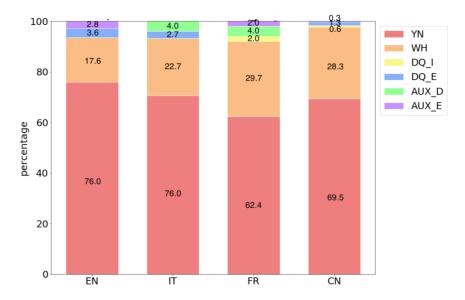


FIGURE – Question forms distribution

A₁ Why are you crying?B₂ Because I hurt myself.

- → A₁ is of Wh form, Ask_Feature function
- → B₂ is of Wh form, Give_Feature function

ASYMMETRY

- A1 so- wh- where can you move to?
- B₂ Well...you know...I don't even know where I'm living next year.

Saarbrücken Corpus of Spoken English

- → A₁ is of Wh form, Ask_Feature function
- → B₂ is of Uncertain form, Give_Uncertainty function

- 1. Asymmetry of form/function
- 2. The form/function of the given answer doesn't fall under one of the forms/functions accepted by the question
- → Mismatch of form/function
- → Logical incoherence

	Questions	Expected Answers
Forms	Yes/No Wh	{Yes/No, Uncertain, Unknown} {Wh, Uncertain, Unknown}
	Disjunctive- Inclusive	{Yes/No, Uncertain, Unknown}
	Disjunctive- Exclusive	{Wh, Uncertain, Unknown}
	Auxiliary-Deontic	{Yes/No, NONE, Performance}
	Auxiliary-	{Yes/No, Uncertain, Unknown}
	Epistemic	
Functions	Completion Sug- gestion	{Refuse, Accept, Phatic, Give_Confirmation}
	Phatic	{Refuse, Phatic, Give_Confirmation, Report, NONE}
	Ask_Confirmation	{Refuse, Accept, Give_Uncertainty, Give_Unknown, Give_Confirmation}
	Ask_Feature, Ask_Performance	{Give_Feature, Give_Uncertainty, Give_Unknown} {Perform, NONE, Give_Unknown, Give_Uncertainty, Accept}
	Reported Speech	{Phatic, Reported, NONE}

BUILDING BRIDGES

SANDERS Well, I think we got one that's coming out tomorrow.

BLITZER Which one?

SANDERS Last year's.

BLITZER 2014?

SANDERS Yes.

BLITZER What about 2013, all the other ones?

- SANDERS You'll get them, yes. [...] Unfortunately unfortunately, I remain one of the poorer members of the United States Senate. And that's what that will show. [applause]
- **BLITZER** So, Senator, just to be clear, tomorrow you will release the 2014 tax returns from you and your family?

SANDERS Yes.

BLITZER And what about the earlier ones? What's the problem...

SANDERS Yes.

BLITZER What's taking so long? Because you just have to go to the filing cabinet, make a copy, and release them. [applause]

Democratic Candidates Debate in Brooklyn, New York, April 14, 2016

NEGOTIATION PHASES

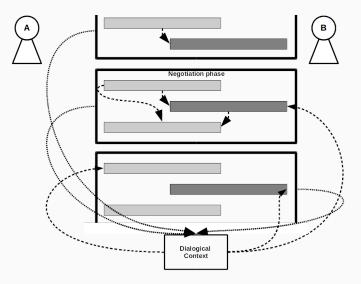


FIGURE – Subdivision of a dialogue in negotiation phases.

Wh-words: what, when, where, who, whom, which, whose, why, how

WH-WORD	FRENCH EQUIVALENTS	
Who	qui, quel, quelle, quels, quelles	
	lequel, laquelle, lesquels, lesquelles	

TABLE - French equivalents of English wh-words - the case of "Who".

Minimal negotiation phases

Question Where is the unicorn? **Answer** The unicorn is at home.

Question Où est la licorne? Answer La licorne est à la maison.

★ The unicorn will grow soon

★ The unicorn is blue VS Charlie is a blue unicorn

★ What coulour is Charlie?

SETTLERS OF CATANE

FIGURE - Gameboard during a game.

- A1 Est-ce que quelqu'un a de l'argile?
- B_2 Oui
- A₃ Contre du bois?
- B_4 Non

- A1 Does anyone have clay?
- $B_2 \ \text{Yes}$
- A₃ To trade for wood?
- $B_4 \ \text{No}$

Dialogues in Games (DinG)

- A_1 Does anyone have clay?
- $B_2 \ \text{Yes}$
- $A_{3}\,$ To trade for wood?
- $B_4 \ \text{No}$

- A1 Does anyone have clay?
- B_2 Yes
- A_3 To trade for wood?
- B₄ No

 $[\![B_2]\!] [\![decl(A_1)]\!]$

 $= (\lambda P. P)$ [Someone has clay]

= $\exists x [clay(x) \land \exists e [have(e) \land ag(e) = someone \land th(e) = x]]$

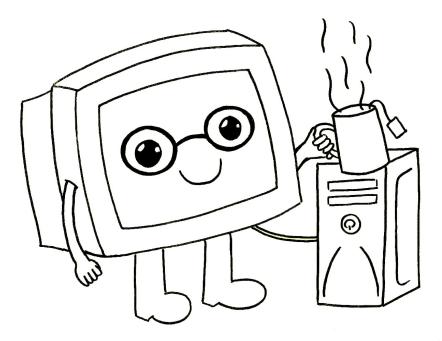
- A1 Does anyone have clay?
- $B_2 \ \text{Yes}$
- A_3 To trade for wood?
- B₄ No

 $[\![B_4]\!][\![A_3]\!] = [\![B_4]\!][\![Does anyone have clay to trade for wood?]\!]$

- $= (\lambda P. \text{ not } P)$ [Someone has clay to trade for wood]
- = not $(\exists x \exists y [clay(x) \land wood(y) \land \exists e [have(e) \land ag(e) = someone \land th(e) = x \land \exists f [trade(f, x, y)]])$

CONCLUSION

We have:


- A minimal (logical, compositional, dynamic) theoretical model of questions and answers
- A minimal implementation for builiding representations (UniC)
- A cross-lingual typology of questions and answers (annotation scheme)
- A corpus of simplified real-life interactions (DinG)

We have:

- A minimal (logical, compositional, dynamic) theoretical model of questions and answers
- A minimal implementation for builiding representations (UniC)
- A cross-lingual typology of questions and answers (annotation scheme)
- A corpus of simplified real-life interactions (DinG)

To-do:

• Make it all work together (automatically)

RÉFÉRENCES

- Amblard, M., Boritchev, M., Carletti, M., Dieudonat, L., and Tsai, Y. (2019). A taxonomy of real-life questions and answers in dialogue. In SemDial 2019 (LondonLogue).
- Champollion, L. (2011). Quantification and negation in event semantics.
- de Groote, P. (2006). Towards a montagovian account of dynamics. Proceedings of semantics and linguistic theory XVI.
- Pogodalla, S. (2016). ACGTK : un outil de développement et de test pour les grammaires catégorielles abstraites. Actes de la 23ème Conférence sur le Traitement Automatique des Langues Naturelles, 31ème Journées d'Études sur la Parole, 18ème Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (JEP-TALN-RECITAL 2016). Poster - Démonstration aux 23ème Conférence sur le Traitement Automatique des Langues Naturelles JEP-TALN-RECITAL 2016, Paris, France.

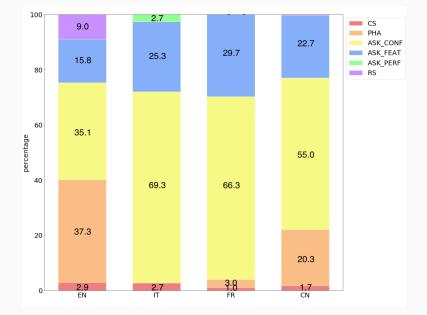


FIGURE – Question functions distribution

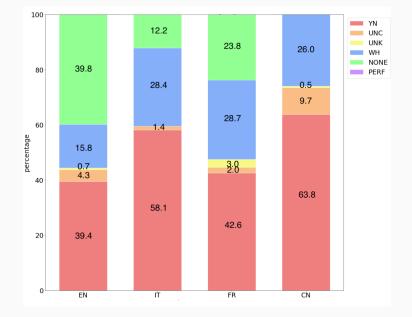


FIGURE – Answer forms distribution

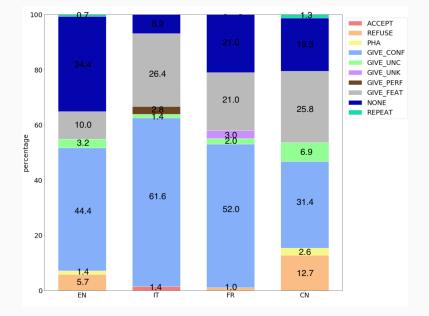


FIGURE – Answer functions distribution