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Abstract— Gaze cues, which initiate an action or behaviour,
are necessary for a responsive and intuitive interaction. Us-
ing gaze to signal intentions or request an action during
conversation is conventional. We propose a new approach
to estimate gaze using a neural network architecture, while
considering the dynamic patterns of real world gaze behaviour
in natural interaction. The main goal is to provide foundation
for robot/avatar to communicate with humans using natural
multimodal-dialogue. Currently, robotic gaze systems are re-
active in nature but our Gaze-Estimation framework can per-
form unified gaze detection, gaze-object prediction and object-
landmark heatmap in a single scene, which paves the way for a
more proactive approach. We generated 2.4M gaze predictions
of various types of gaze in a more natural setting (GHI-
Gaze). The predicted and categorised gaze data can be used
to automate contextualized robotic gaze-tracking behaviour
in interaction. We evaluate the performance on a manually-
annotated data set and a publicly available gaze-follow dataset.
Compared to previously reported methods our model performs
better with the closest angular error to that of a human
annotator. As future work, we propose an implementable gaze
architecture for a social robot from Furhat robotics1.

I. INTRODUCTION

A crucial social characteristic that facilitates human-robot
cooperation is gaze-following (HRI). Robots that can track
a person’s gaze are better able to comprehend that person’s
attention, interest, and intentions. Gaze following enables us
to make eye contact which can enhance our social presence
and naturalness. To infer human visual attention, it is
essential to carefully consider head posture, gaze direction,
scene organization, and saliency [1].

The main objectives and contributions of the paper are:

1) Automating robot gaze behaviour using machine learn-
ing.

2) Classifying elements of the dialogue based only on
gaze behaviours (such as dialogue acts, intimacy reg-
ulation and referencing objects)

3) Presenting a dataset containing annotations of attention
targets with complex patterns of gaze behaviour and
out-of-scene target predictions
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4) Developing an implementable-model of gaze in dia-
logue for a conversational robot/avatar to interpret and
produce human-like gaze behaviour

Eye gaze supports and augments other social behaviours
such as speech/gesture, and the mental states or cognitive
effort can substantially influence gaze. Since speech is a
dominant mode of communication in human interactions, it is
non-viable to separate gaze from speech in human-robot di-
alogue. Researchers have shown that gaze improves speech-
based interactions such as disambiguating object references,
maintaining engagement, conversation and narration, guiding
attention, managing partners, and influencing turn-taking [2],
[3]. We suggest a non-wearable eye-gaze detection technique
that uses videos to study gaze in interaction by making use
of the new developments in deep learning.

The majority of the research on gaze following in HRI
points to its potential as a useful tool for enhancing robots
capacity for social interaction and communication. However,
there are still a lot of difficulties and unanswered problems,
such as how to design and apply gaze in a reliable way, as
well as how to gauge its efficiency in various HRI scenarios.
Our method utilizes the manually annotated gaze predictions
denoting various types of gaze to train the network that
results in a more efficient and precise detection of gaze
targets to its corresponding object in space at a given time.
The rapid advancements in the field of robotic technologies
presses the importance of social robots’ prominence in the
future, such as robots that are built for interacting with people
and are designed for various applications such as therapy and
education alongside industry.

II. CORRESPONDING WORK

Recent research has focused on developing algorithms for
automatic gaze estimation using various approaches:

Deep Learning-based approaches: Deep learning algo-
rithms, such as convolutional neural networks (CNNs) have
been used to predict gaze locations in images or video data.
These approaches have shown promising results in terms of
accuracy and efficiency [4], [5], [6].

Appearance-based models: Focuses on developing mod-
els that take into account the appearance of a person’s eyes
and face to predict gaze locations. These models have been
shown to outperform traditional gaze estimation algorithms
that rely solely on image data [7].

Multi-modal fusion: Emphasizes on fusing multiple
sources of information, such as eye movements, head move-
ments, and facial expressions, to make more accurate gaze
predictions. The multi-modal fusion approaches have been



Fig. 1. Various gaze estimates captured in two different angles in a particular scene. a. Mutual attention (looking at each other), b. Joint attention (gaze
on hummus and questionnaire), c. Gaze aversion (gaze on partner while the partner looks away), d. Individual gaze (attention on different objects in space)

shown to improve the accuracy of gaze prediction compared
to single-modality methods [8]

Gaze correction in virtual reality: Virtual reality (VR)
environments introduce new challenges for gaze estimation,
as the participant’s gaze is not directly visible. The main
focus is on developing gaze correction methods that can
correct for misalignment between the gaze location and the
virtual scene in VR environments [9].

Automatic gaze annotation is typically faster and less
expensive than manual gaze annotation, but the accuracy of
the labels may be lower than with manual annotation.

III. MODELING GAZE BEHAVIOUR IN A ROBOT

Modeling gaze behavior in a robot often requires a com-
bination of computer vision, and robotic control system, as
well as a thorough understanding of human gaze behavior.
It can be challenging, particularly when the gaze behavior is
complex or subtle.

Some of the most difficult types of gaze to model include:
Mutual gaze/ Direct gaze, where the robot directly looks
at the human, simulating eye contact, because it requires the
robot to respond in real-time to the human gaze, while also
adjusting its own gaze in a natural and engaging way [11].
Longer mutual attention can be considered eerie and induce
uncanny valley effects. Averted gaze, where the robot looks
away from the human, requires the robot to simulate a lack
of attention or interest, which can be difficult to do in a
way that is convincing to humans [10]. Gaze cues, where
the robot uses gaze to initiate an action or behavior, often
requires the robot to respond to human gaze in a sophisticated

and context-sensitive way [12], [13]. Scanning gaze, where
the robot moves its gaze around its environment, simulating
exploration or attention to multiple objects or people. Follow
gaze, where the robot tracks the movement of a human’s
gaze, implying attention or interest in what the human is
looking at.

In a human-robot interaction, the prediction of a gaze
target can be used as input for the determination of the best
robot action in response to a human action, given the cir-
cumstances. The challenges arise from the need to simulate
human-like gaze behavior in a way that is realistic, engaging,
and responsive to human actions. Follow gaze, where the
robot tracks the movement of a human gaze, can be easier
to model compared to other types of gaze behavior in a robot.
This is because gaze follow often requires less sophisticated
modeling of human gaze and more straightforward control
of the robot’s gaze mechanism. These different types of gaze
can be used in combination to create more sophisticated and
nuanced interactions between the robot and the human.

In gaze follow, the robot uses computer vision algorithms
to detect the position and movement of the human gaze,
and then adjusts its own gaze accordingly. It does not need
to respond in real-time or make sophisticated judgments
about the context of the interaction. Instead, the robot
simply follows the human gaze as it moves. However, it is
important to note that gaze follow is still a challenging task,
particularly when the gaze is fast-moving or unpredictable
and goal/context dependent. The results of the study have
a direct application on improving the contextualized gaze
on a social robot and in this paper, we discuss the gaze



architecture for implementation on a robot.

IV. METHOD

A. Data

The data consists of videos of pairs of participants, work-
ing at the Good Housekeeping Institute2 (GHI, a consumer
product testing organisation in the UK), who taste eight
different types of hummus and rate them. Participants are
seated at 90° angle to each other, with separate cameras and
radio microphones capturing each participant. The setup is
designed to record clear eye movements, facial expressions,
gestures and speech.

In total, 24 high definition videos lasting between 24-30
minutes were recorded at 30 frames per second. Participants
were allowed to spend considerable amount of time for tast-
ing and rating each hummus, while choosing their strategies
in performing the task and organising the interaction. They
are task directed dialogues and not completely spontaneous.
This type of dialogue is ideal for our purposes as it allows
the internal dynamics of the conversation to be entirely
free while the task creates an external trigger about which
participants are communicating, meaning that both referential
and interactive aspects of gaze ought to be present.

B. Annotation and Transcription

For the video transcription principles of
Gesprächsanalytisches Transkriptionssystem (GAT) were
considered. Annotation was done using ELAN software3.
The orthographical transcription was done in 2 different
tiers speech1 and speech2 for each participant(figure 1).
These tiers contained metadata indicating the beginning
and end of the excerpt with respective spoken utterance
per unit encoded. In some situations a short description of
the interactional context in unicode such as cough, umm,
laughter etc.

We were able to study interactional dynamics by using
the recordings specific to face-to-face dialogue while also
understanding the collaborative processing and generation of
language. Henceforth, during the recording sessions partici-
pants had to perform a collaborative task while having free
range of conversations yielding natural interaction.

C. Neural Network Architecture

The videos that were manually annotated were later used
to predict robust gaze target location.

1) Convolutional layers: The architecture consist of head
convolutional layers for head feature extraction (ResNet-50).
It is followed by an additional residual layer and an average
pooling layer to reduce the spatial dimension of the feature
maps. The blue and the purple pixels shown in figure 2,
denote the head bounding box of each person and the white
pixels denote rest of the image. They are reduced using
three max pooling operations. The scene feature extraction
network computes scene feature map similar to the head
convolution module. Head feature map and head position

2https://www.goodhousekeeping.com/uk/ the-institute/
3https://archive.mpi.nl/tla/elan

are then concatenated while the scene convolution is the
concatenation of the head position and the scene image.

2) Dense layers: The final layers of the architecture
consist of a fully connected layer where the attention layer
computes attention maps by passing the two concatenated
layers. Lastly, two convolution layers encode the features in
the encoder module.

y =Wd ∗h+bd (1)

where y is the gaze prediction, Wd is the weight matrix of
the final dense layer, h is the output of the previous layer,
and bd is the bias term of the final dense layer.

hi = f (Wi ∗ x+bi) (2)

where hi is the output of the it h convolutional layer, f is
the activation function, Wi is the weight matrix of the it h

layer, x is the input image, and bi is the bias term of the it h

layer.
3) Recurrent layers: The scene information providing

head position as spacial referencing enables the model to
learn faster. Subsequently, the architecture includes convo-
lutional Long Short-Term Memory (Conv-LSTM) to capture
temporal dependencies in the eye movement data from the
sequence of frames. Four deconvolution layers makeup the
deconv module to up-sample the features computed by the
convLSTM into a full sized feature map.

ht = fr(Wr ∗ht−1 +Ur ∗ xt +br) (3)

where ht is the hidden state at time step t, fr is the
activation function of the recurrent layer, Wr and Ur are the
weight matrices of the recurrent layer, xt is the input image
at time step t, and br is the bias term of the recurrent layer.

4) Object detection: The feature map is then modulated
by a scalar that defines whether the gaze attention of the
person is within the bounds of the scene or out-of frame,
higher the value of the scalar the focus is within the frame.
It consists of two convolution layers and a fully connected
layer while the element-wise subtraction from the feature
map normalization is performed. Following, heatmap with
minimum values greater than or equal to zero are cropped
resulting in the final heatmap that can be visualized with
intensity maps of the object prediction.

V. IMPLEMENTATION OF NEURAL NETWORKS

A. Multiface processing pipeline

The technique uses a two-stage strategy. First, by consid-
ering the scene and head data as a separate network input
that share the same scene properties. The scene image serves
as a discrete input to the scene-channel for a one-shot feature
extraction regardless of the presence of the individuals.

The feature extraction backbone network is Resnet50 [14]
for network verification, where the head channel considers
the number of persons present in an input image into account
(dyadic in this particular situation). To forecast the gaze
target, the two participants’ head images and head locations



Gaze-Object Prediction

Scene

Gaze prediction

Object prediction

Scene feature extraction Scene feature map 

Head feature extraction

Fusion 
Feature

Head feature map

Attention 
Layer

Encoder Conv
LSTM Deconv
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are used as binary masks. Each head image location mask
serves as the head channel input.

fh =Ch(Ih), fs =Cs(Is) (4)

Second, in order to predict the gaze, same head ( fh) and
scene ( fs) features are concatenated to a fusion layer which
goes through several up sampling and convolution layers to
predict the position heatmap of the gaze targets. To avoid
exorbitant consumption of computational resources for scene
and face feature extraction we opted for lightweight ghostnet
module which uses inexpensive operations to generate fea-
ture maps similar to convolutional layers, although it does
not transcend the convolution operation.

B. Face detection and heatmap generation

Single-stage methods for multi-stage face recognition are
preferred for real-time applications due to their light weight
and high accuracy. For example, face recognition methods
apply a single-layer architecture to design more efficient
modules for facial features.

We created an extensive face dataset using a large number
of manual annotations and use a one-step gaze estimation
method. The input to the model is a complete image with
two faces and the output is the gaze directions of the people

in the scene. Instead of processing each face individually,
we propose a model that estimates the gaze of multiple peo-
ple simultaneously with assistance from attention heatmaps
within the image.

Heatmap generation for gaze predictions using machine
learning involves creating visual representations of gaze data.
Heatmaps are generated by plotting the gaze data onto a
2D image and color coding the points based on the density
of gaze data in that area [15]. Gaze heatmaps can be used
to evaluate the performance of gaze-based algorithms by
comparing the generated heatmaps with ground-truth data.

C. Gaze estimation

The model was trained on NVIDIA RTX TITAN GPU and
implemented in Pytorch4. The network is optimized by the
Adam algorithm for 100 epochs and the batch size was set
as 32, and the initial learning rate was 10−4. The scene and
the masked header image, acts as input to the model, scaled
to 224*224. The output was a heat map of size 64*64 and
the ground truth heat map was generated with 2D Gaussian
weights around the ground truth of the tracked target. During
training, to ensure a repeatable balance of the two channels,

4The code will be made available on GitHub
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Fig. 3. Real-time Human-Robot Interaction architecture for a Social Robot

a single randomized head image was selected from the scene
during each iteration.

In addition, weight loss varied depending on the duration
of the training. In the early stages, we expect the output
heatmaps to reflect the tracked target points, like previous
gaze tracking methods. In the final stage, we focused on
refining heat maps and minimizing errors through regression.
Thus, in our implementation, the value of (alpha) increases
as the number of training epochs increases from 0 to 0.5.
During inference, to track multiple people’s gazes, the scene-
channel extracts features from the scene only once, while the
main channel runs multiple times for different people.

VI. EXPERIMENT AND EVALUATION

The manual annotation has been done on 4 videos for the
GHI corpus and we automate gaze for all 24 videos ranging
between 24-30 minutes, and the generated images for each
video is between 40k to 60k. Therefore, the resulting gaze
prediction dataset (GHI-Gaze) approximately consists of 2.4
million images with facial landmark, gaze information and
heatmaps were generated with two different angles for the
same session (figure 1). The various types of gaze behaviour
can be extracted by collecting the specific coded temporal
information.

Two experiments were conducted to evaluate the perfor-
mance of the model. We compare gaze annotation from GHI
dataset (coded for various types of gaze) [16] to our auto-
matically generated gaze estimate images from videos (GHI-

Gaze). Evaluating the accuracy of automatic and manual gaze
predictions involves comparing the predicted gaze locations
to the ground truth, which is typically obtained through
manual annotation by a human annotator. Following, we
evaluated our models performance on the GazeFollow dataset
that is publicly available. ImageNet, PASCAL and MSCOCO
are used to build the GazeFollow dataset which contains 122k
images of different scenes and 130k annotations.

We use four performance measures that are key indicators
based on previous gaze-following methods to evaluate the
model. AUC (Area Under the Curve) is the metric used
to evaluate the performance of a binary classifier i.e the
similarity between the predicted versus the ground truth
heatmap. AUC ranges from 0 to 1, with a value of 1
indicating perfect classifier performance, and 0.5 indicating
random performance. The averaged difference between the
coordinates of the predicted gaze target point and the co-
ordinates of the ground truth point that some annotators
have assigned a label is the average distance, Avg Dist.
The shortest distance between the anticipated point and the
closest labeled point is the Minimum Distance, Min Dist.
The angular error between the predicted and ground truth
gaze direction from the head position to the attention target
in the image is referred to as Ang.

Similar to the recent gaze prediction approaches [22], [23],
[24], [25], [26], [27] for feature extraction we adopt resnet50
network. The resulting comparison with previous methods is



TABLE I
EVALUATING ON GAZEFOLLOW DATASET

Method AUC ↑ Avg. Dist ↓ Min. Dist ↓ Ang ↓
Recasens et al.(2015) 0.878 0.190 0.113 24.0°
Lian et al.(2018) 0.906 0.145 0.082 17.6°
Chong et al.(2020) 0.921 0.137 0.077 -
Dai et al.(2021) 0.922 0.133 - 16.1°
Jin et al.(2021) 0.919 0.126 0.076 -
Tu et al.(2022) 0.917 0.133 0.069 -
GHI-Gaze (ours) 0.920 0.112 0.059 13.7°
Human 0.924 0.096 0.040 11.0°

shown in Table 1. The analysis shows that the GHI-Gaze,
predictions fine tuned with human annotations and attention
maps perform better with AUC of 0.924 and the angular
error of 13.7° compared to the previous results. The human
metrics have the best performance measure with 0.924 AUC
and 11° of angular error.

In Figure 1, “a” represents mutual gaze where the indi-
viduals are looking at one another. Due to a clear view of
the face it is easier to visualize the gaze in the first image.
While in the second generated image of “a” due to face
occlusion it is impossible for human annotators to recognize
the gaze, but the model accurately detects the gaze taking
into consideration other factors such as head pose estimates
and attention heatmaps.

Images represented as “b” denote gaze on the same object
in the scene, and “c” averted gaze where an individual
looks at the partner and the partner looks away. Finally, “d”
represents gaze on different objects with in the scene.

VII. GAZE INTERACTION ARCHITECTURE FOR A ROBOT

The Furhat Robot platform consists of input and output in-
terfaces (projector, neck servo motors, touchscreen, etc.) and
software modules for automatic speech recognition (ASR),
text-to-speech synthesis (TTS), face tracking, etc. The Event
System mediates all of the sensory inputs, modules, and
actuators in the Robot Platform. To create a gaze plan, the
Gaze Planner advocates high-level events such as the user’s
position, speech input, and the positioning of objects on the
touchscreen. The Gaze Controller then takes advantage of
this strategy to generate actions that causes the robot’s head
to turn and eyes to move. Using the Skill API, which defines
all of the interaction-specific details, is where the interactions
can be implemented.

The interaction is modelled using state charts where the
dialog contexts are defined as hierarchical states and the
generic behaviors are defined on higher levels in the hierar-
chy (figure 3). While the more specific behaviors are defined
further down in the hierarchy, and may override generic
behaviors. The intent classification (NLU) dynamically takes
the current hierarchical contexts enabling multiple intent in
each utterance. Complex behaviors may be defined in their
own state charts, and reused across applications. Computer
vision platform tracks real time multi-user face and estimates
head pose from the video stream. The architecture provided
in figure 3, describes the dialogue with gaze module imple-
mentation from the current work. A specific type of gaze, acts

as an input for the robotic gaze based on the speech intent
and face tracking by assessing the temporal predictions.

VIII. DISCUSSION AND FUTURE WORK

The main goal of the paper is to improve the accuracy of
gaze estimation and prediction. We propose a novel neural
network architecture to simultaneously and accurately detect
gaze target on the intended object for multiple people in a
single scene. We compare the results firstly with manually
annotated data from GHI corpus and then with the popular
GazeFollow dataset. Our results show an improvement in
the performance compared to previous methods and provide
specific information of the type of gaze in a given scene.

We faced challenges such as head pose variations, oc-
clusions, and cluttered backgrounds, but with the help of
extensive manual annotation data made available it has been
possible to reduce error while also adopting open-sourced
pre-trained models. Most current gaze prediction methods
use visual information only [17]. However, incorporating
linguistic modalities such as dialogue could lead to improved
performance and more natural gaze predictions [18].

It is possible to identify when someone is inattentive by
observing how they look at an object, following their gaze,
and even identifying if they are maintaining mutual gaze. Yet,
there remains a complex, open challenge in automatically
detecting and quantifying these types of visual attention from
images and videos.

Gaze information can be used as an input for human-
Robot interaction (figure 3), and the work could focus on
developing more sophisticated gaze-based interaction meth-
ods that are more natural and intuitive. Gaze can provide
insights into human behavior, such as attention, memory,
and emotions [19], [20], [21]. Hence, by developing new
methods for analyzing gaze data, it is possible to gain a
better understanding of human behavior and its underlying
cognitive processes. We plan to implement the gaze results
obtained from the study on a Furhat Robot.

Many current gaze estimation and prediction methods
are computationally intensive and not suitable for real-time
applications. Developing fast and efficient algorithms for
gaze estimation and prediction is an important area for future
work.

Overall, the field of gaze estimation and prediction has
the potential to revolutionize the way we interact with
technology and gain insights into human behavior. There is
much work to be done to reach these goals, but the potential
impact is significant.
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