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Abstract

Testing and computational implementa-
tion of formal models of situated linguistic
interaction imposes demands on computa-
tional infrastructure. We present our sys-
tem called KILLE and provide a proof-of-
concept evaluation of interactive situated
learning of object categories and spatial
relations.

1 Grounded meaning in interaction

Contemporary approaches to semantics of natural
language (Cooper, 2016; Fernández et al., 2011)
are based on two important premises: (i) meanings
are not universal and static but are agent-relative
and are continuously adapted in interaction with
other agents and environment (Clark, 1996; Pick-
ering and Garrod, 2004); and (ii) meanings (sense
and reference) are multi-modal where different
lexical items are sensitive to different modalities
in different contexts to different degrees (Coven-
try and Garrod, 2005).

Both aspects have changed the focus in compu-
tational semantics from engineering formal rules
that cover a domain or a fragment of linguistic data
off-line to approaches that are data driven and in-
volve continuous online fine-tuning of the model’s
parameters (Skočaj et al., 2011; Matuszek et al.,
2012). In robotics a shift in the approach has hap-
pened much earlier as it quickly became apparent
that robots with static models cannot deal with any
changes in the environment or with the environ-
ment’s uncertainty. Instead, modern robotics uses
models which are learned from data and refined
continuously as the robot’s interaction with the en-
vironment develops (for example (Dissanayake et
al., 2001) for map building). We argue that the
same paradigm should also be adopted when deal-
ing with computational models of language. In

this view the focus of building a computational
system is not on designing representations but in-
vestigating and modelling interactive strategies or
dialogue games (Kowtko et al., 1992) that will al-
low construction of such representations or fine-
tuning of their features, depending on how much
of representations are pre-available to such a sys-
tem.1

The interactive semantics of a computational
system have also implications on the models of
meaning used. The predominant semantic repre-
sentations used in computational semantics today
are vector-space representations that define mean-
ing as semantic similarity between lexical items on
the basis of their co-occurrence in contexts (Tur-
ney et al., 2010; Clark, 2015). Such models can
be successfully extracted from large corpora of
text and are very successful in representing mean-
ing. However, they nonetheless represent mean-
ing in an indirect way as they never consider a
relation between an expression and situations in
which that expression applies to or is true for. The
reason why words in particular linguistic contexts
are lexically similar is because words in linguis-
tic strings as a whole refer to (more or less) the
same situations which we do not have access to or
ignore when we built vector space models. How-
ever, in an interactive scenario described above we
can explore linking linguistic expressions and per-
ceptual features directly, a process which is com-
monly known as grounding (Harnad, 1990; Roy,
2002). Such models are required for situated dia-
logue agents or conversational robots which have
to link language and situations that they jointly at-
tend to with human conversational partners.2

1This sounds similar to the Chomsky’s innateness claim
but here we are thinking of purely engineering a system and
make no claims about human cognition.

2It is important to emphasise nonetheless that vector
space models may provide an important source of back-



Grounded meanings of linguistic descriptions
such as “close to the table” and “red” corre-
spond to some function from physical or colour
space to a degree of acceptability of that descrip-
tion (Logan and Sadler, 1996; Roy, 2002; Skočaj
et al., 2011; Matuszek et al., 2012; Kenning-
ton and Schlangen, 2015; McMahan and Stone,
2015). Cognitive structures are hierarchically or-
ganised at several representation layers focusing
on and combining different modalities (Kruijff et
al., 2007). Since the functions predict distributions
of degree of applicability several descriptions may
be equally applicable for the same perceptual sit-
uation: the chair can be “close to the table” or
“to the left of the table” which means vagueness
is prevalent in grounding. This however, can be
resolved through interaction by adopting appro-
priate interaction strategies (Kelleher et al., 2005;
Skantze et al., 2014; Dobnik et al., 2015).

A formal model of perceptual semantics in in-
teraction has been the focus of Type Theory with
Records (TTR) (Cooper, 2016; Larsson, 2013;
Dobnik et al., 2013). Implementing, validat-
ing and testing such models imposes complex
demands on computational infrastructure in the
sense that this involves connecting perceptual sen-
sors with dialogue systems and machine learn-
ing algorithms. Processing language in interac-
tion also presents challenges from the computa-
tional perspective as it is often not trivial to em-
ploy existing language technology tools and (ma-
chine learning) algorithms, which were developed
for processing data offline, in an interactive tutor-
ing scenario. To address both issues we have de-
veloped a framework for situated agents that learn
grounded language incrementally and online with
a help of human tutor called KILLE3 (Kinect Is
Learning LanguagE). This paper focuses on the
construction of the Kille framework and its proper-
ties while it also provides a proof-of-concept eval-
uation of such learning of simple object and spatial
relations representations. We hope that this frame-
work will be a useful tool for future studying and
computational modelling language in interaction.

ground knowledge in such scenario and hence a dialogue
agent does not have to learn every meaning representation
through grounding. The challenges of integration of both
meaning representations are a focus of ongoing research.

3Swedish for “fellow”, “chap” or “bloke”.

2 The KILLE system

KILLE is a non-mobile table-top robot con-
necting Kinect sensors with image processing
(libfreenect), classification (clustering of visual
features and location classification) and a spoken
dialogue system OpenDial4 (Lison, 2013) con-
nected through Robot Operating System (ROS)
(Quigley et al., 2009). The latter is a popular
robotic middle-ware which ensures communica-
tion between them. It runs on a variety of popular
robotic hardware implementations which means
that our system could be ported to them with-
out too much modification (Figure 1). We pre-
fer a robotic middle-ware rather systems centred
around dialogue systems because it allows us to
represent and exchange perceptual and linguistic
information together and in the same way: there is
one information state for both. In addition to the
integration of these modules, our main contribu-
tion is implementation of ROSDial which provides
and interface between OpenDial and ROS, imple-
mentation of Kille Core which provides percep-
tual and spatial classification, and implementation
of dialogue games that interface between dialogue
and perceptual classification and therefore enable
incremental perceptual learning.

The system learns to recognise objects pre-
sented to it by a human tutor from scratch. It
can direct learning by asking for more objects
of a particular category if it is not able to clas-
sify them with sufficient reliability, thus filling
in the missing knowledge. If more objects of a
particular category are available in the scene and
the system is able to recognise them, the system
queries the user to describe spatial relations be-
tween them. Each of these kinds of descriptions
focus on a different perceptual features (visual fea-
tures vs location) and represent two fundamental
linguistic semantic categories: entities and entity
relations. Overall, KILLE combines both passive
(being instructed) and active (requesting examples
to learn from) learning which is incremental in
terms of learning to recognise situations denoted
by the lexical categories. A demo of the system
can be found at http://www.youtube.com/
watch?v=AsEgaka6tH0.

Below there are some examples of dialogue
games that we implemented as dialogue rules in
the dialogue manager which act upon both linguis-
tic and perceptual knowledge.

4https://github.com/plison/opendial
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Figure 1: Kille modules

1. Direct instruction: objects

User: This is a cup.
System: [Object is focused on and observed.]
S: OK, I learned a cup.

2. Describing objects and relations with (un)certainty

U: What is this?
S: [Object is focused on and observed.]
U: The object is thought to be a book, but it might also

be a mug.

3. Reinforcement from feedback

U: What is this?
S: [Object is focused on and observed.]
S: This is a cup.
U: That is correct.
S: [Observation is added to the models.]

4. Self initiative: spatial relations

S: [Objects are focused on and observed.]
S: One of the objects is book, the other one is box.

Please tell me where things are.
U: The book is to the left of the box.
S: OK, this relation is called “to the left of”.

For visual representations we use Open Source
Computer Vision (OpenCV)5 (Bradski and
Kaehler, 2008) which is a popular library for
computer vision including real-time machine
learning applications. Through ROS we receive
real-time frames from Kinect which includes both
data from the depth sensor and the visual RGB
sensor. We use the depth information (which
gives us a precise 3d location of points making up
an object) to detect the object in focus and later
take the pixels representing these points in focus
to detect SIFT features (Scale-Invariant Feature
Transform) (Lowe, 1999) over them which are
used to represent objects in our model as shown
in Figure 2.

Objects, including those that are very similar
and belong to the same category, have different
number of SIFT descriptors detected depending on

5http://opencv.org

(a) (b)

(c) (d)

Figure 2: A perception of a plush gnome from
the depth sensor (a) including the background, (b)
with the background removed, (c) with the RGB
image superimposed, and (d) with SIFT features
detected in the image. The black border in (a) is a
perceptual artefact arising from the interference of
sensors.

their visual properties: some objects have more vi-
sual details than others. There is a bias that ob-
ject with less features match objects with more
(and similar looking) features. In our interactive
scenario there is also no guarantee that the same
features will be detected after the object is re-
introduced (or even between two successive scans)
as the captured frame will be slightly different
from the previously captured one because of slight
changes in location, lighting and camera noise.

3 Interactive perceptional learning

In the following subsections we present a proof-
of concept implementation and evaluation of per-
ceptual learning through interaction which demon-
strates the usability of the Kille framework.

Learning to recognise objects To recognise ob-
jects we developed a nearest neighbour classifi-
cation method based on the the FLANN library
(Muja and Lowe, 2009) which works by compar-
ing the SIFT descriptors of object to classify with
the objects in the database and then returns the
class of the closest matching object. In the eval-
uation, 10 consecutive scans are taken and their
recognition scores are averaged to a single score.
This improves the accuracy but increases the clas-
sification time (which is nonetheless still reason-
able for the small domain of objects we are con-



sidering). The location of the recognised object
is estimated by taking the locations of the twenty
matched descriptors with the shortest distance.

To evaluate the system’s performance in an in-
teractive tutoring scenario we chose the following
10 objects: apple, banana, teddy bear, book, cap,
car, cup, can of paint, shoe and shoe-box. A hu-
man tutor successively re-introduces the same 10
objects to the system in a pre-defined order over
four rounds trying to keep the presentation identi-
cal as much as possible. In each round all objects
are first learned and then queried. To avoid ASR
errors both in learning and generation text input is
used.

Taking the average SIFT feature matching
scores over 4 rounds for each object and taking the
class of the object with highest mean score, on av-
erage all but one object were recognised correctly.
However, the cap was consistently confused with
the banana. There were a couple of individual con-
fusions that have been levelled out in the calcula-
tion of the average score. To test how distinct ob-
jects are from one another we calculated a differ-
ence of the matching scores of the highest-ranking
object of the correct category and the other highest
ranking candidate. If we arrange objects by this
score, we get the following ranking (from more
distinct to least distinct): book > car > shoe >
cup > banana > bear > apple > paint > shoe-box
> cap. We also tested recognition of the same ob-
jects when rotated and recognition of new objects
of the same category.

Learning to recognise spatial relations Be-
fore spatial relations can be learned the system
must recognise the target and the landmark ob-
jects (“the gnome/TARGET is to the left of the
book/LANDMARK”) both in a linguistic string
and in a perceptual scene. Twenty highest rank-
ing SIFT features are taken for each object and
their x (width), y (height) and z (depth) coordinates
are averaged, thus giving us the centroid of the 20
most salient features of an object. The coordinate
frame of the coordinates is transposed to the centre
of the landmark object. The relativised location of
the target to the landmark are fed to a Linear Sup-
port Vector Classifier (SVC) with descriptions as
target classes.

A human tutor taught the system by present-
ing it the target object (a book) randomly 3 times
at 16 different locations (2 distances/circles con-
taining 8 points separated at 45◦) in relation to

the landmark (the car). The spatial descriptions
that the human instructor used were to the left of,
to the right of, in front of, behind of, near and
close to (6). The performance of the system was
evaluated by two human conversational partners,
one of whom was also the tutor from the learn-
ing stage. The target object was randomly placed
in one of the 16 locations and each location was
used twice which gave us 32 generations. A par-
ticular location may be described with several spa-
tial descriptions (but not all combinations of de-
scriptions are possible) but some may be more ap-
propriate than others. The evaluators first wrote
down a description they would use to describe the
scene and then the system would be queried about
the location of the target to which it provided a
response. The evaluators would then also record
whether they agree with the generation. The ob-
served blind agreement between the evaluators is
0.5313 with κ = 0.4313 which means that choos-
ing a spatial description is quite a subjective task.
The blind agreement between the evaluators and
the system is 0.2344 with κ = 0.0537. The eval-
uators were happy with the system’s generation
in additional 37.5% of cases, which means that
the system generated an appropriate description in
60.94% of cases which is encouraging and com-
parable to the similar task in the literature. Note
also that the system tried to learn continuous func-
tions from a very small number of examples, on an
average only 46/6=8 instances.

4 Conclusion and future work

In this paper we argue that there is a need for
a computational infrastructure that will allow us
modelling dynamic grounded semantics in interac-
tion for two reasons: (i) to verify semantic theories
and (ii) to provide a platform for their computa-
tional implementations. We developed and frame-
work called KILLE a simple interactive “robot”
which we argue provides a good solution for mod-
elling these aspects and at the same time can
be ported to more sophisticated robotic hardware
platforms. We demonstrated a proof-of-concept of
learning object categories and spatial relations fol-
lowing the theoretical proposals in the literature.
We hope that the platform will provide useful for
testing further models of linguistic and perceptual
interactions.
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