
Turn-taking with a hidden agenda

Robin Cooper
Centre for Linguistic Theory and Studies in Probability (CLASP)

Department of Philosophy, Linguistics and Theory of Science
University of Gothenburg
cooper@ling.gu.se

Abstract

We propose a simple model of turn-taking
in an information state based approach to
dialogue using TTR (Type Theory with
Records). The information state (dia-
logue gameboard) contains an agenda for-
mulated as a list of speech event types
that the dialogue participant plans to real-
ize. A novel aspect of the proposal is that
the agenda also includes types of events
that intuitively should be carried out by
an interlocutor. We argue that all dia-
logue events should be regarded as events
jointly carried out by the dialogue partici-
pants and that this yields a simple formal
method for representing turn-taking in a
formal treatment of dialogue.

1 Perception and types

In the literature on TTR (Type Theory with
Records), see Cooper and Ginzburg (2015) for a
recent introduction, a connection is made between
the notion of judgement in type theory (judging
that an object or event is of a certain type) and
perception, that is, perception involves classifying
something as being of a certain type. We will de-
scribe this in this section. As we interact with our
environment we not only perceive objects but also
create new objects of certain types. Performing an
action is creating an event of a particular type. A
plan is a list of types which we hope to realize in
this way. Thus we obtain a simple theory of ac-
tion based on type theoretic ideas, which we will
describe in Section 2. In Section 3 we will con-
sider how coordinated action can be modelled in
terms of games in this framework. We will see in
Section 4 that this type theoretical view of action
leads naturally to a notion of joint action and that
this is important in order to obtain a theory of coor-

dinated action. Finally, in Section 5, we will apply
this view of action to turn taking in dialogue.

TTR is a type theory which takes many ideas
from Martin-Löf type theory (Martin-Löf, 1984;
Nordström et al., 1990). This kind of type the-
ory differs from the version of the simple theory
of types that Montague used (Montague, 1973;
Montague, 1974) in that it allows for a rich collec-
tion of types including types like Dog and, follow-
ing a suggestion by Ranta (1994), types of situa-
tions like A boy hug a dog in addition to the kind
of types corresponding to basic ontological cate-
gories (for example, in Montague’s case, types like
Entity and Truth value) and all types of functions
based on the basic types which are introduced in
simple type theory. Central to this kind of type the-
ory is the notion of a judgement that an object a is
of a type T , in symbols, a : T . We will sometimes
refer to a as a witness for the type T . In the litera-
ture on TTR this notion of judgement is connected
to a theory of perception. An act of perception in-
volves making such a type judgement. When we
perceive something we perceive it as being of a
certain type. That is, perceiving an object a as a
dog involves making the type judgement a : Dog.
Similarly perceiving a situation, e, as one in which
a boy hugs a dog involves making the type judge-
ment e : A boy hug a dog. Agents are thought
of as having a collection of types available as a
resource which they can employ in, among other
things, acts of perception. The types available to
an agent are in part limited by their perceptual ap-
paratus.

2 Action and types

A judgement can be thought of as an action which
an agent carries out, for example, when an object
is presented to its perceptual apparatus. Cooper
(2014; Cooper (in prep) calls it a kind of type act



(meant as a parallel to speech act) and presents
a simple theory of action based on types. Basi-
cally, there are three things that you can do with
types: (i) judge an object to be of a type (ii) won-
der whether an object is of a type (iii) create a
new object of a type. The third of these is im-
portant for this paper. Since we have types of sit-
uations (including events) we can regard actions
as involving the creation of a situation of a cer-
tain type. Consider a particular boy, b and a par-
ticular dog, d. The type of situation in which b
hugs d can be represented in TTR as a ptype (a
type constructed from a predicate and appropriate
arguments), ‘hug(b,d)’. It is no accident that the
notation for this situation type is the same as that
for a logical formula corresponding to a proposi-
tion. In this kind of type theory, types can serve as
propositions (the “propositions as types” slogan1).
When considered as propositions, they are true if
there is something of the type and false if there is
nothing of the type. Thus if b creates a situation of
the type ‘hug(b,d)’, then b has guaranteed that the
type is “true”.

3 Coordinated action and games

Let us consider a slightly more complicated kind
of situation. Suppose we have a human and a dog
playing the game of fetch, where the human picks
up a stick and throws it, the dog runs after the stick
and brings it back to the human. This involves a
string of events2 which could be regarded as wit-
nesses for ptypes in TTR. If T1, . . . , Tn are types,
then T1_ . . ._Tn is a type whose witnesses are
strings a1 . . . an such that ai : Ti for 1 ≤ i ≤ n.
Thus a game of fetch between a human, a, and a
dog, b, involving a stick, c could be characterized
as having the type:
pick up(a,c)_attract attention(a,b)_throw(a,c)_

run after(b,c)_pick up(b,c)_return(b,c,a)
For technical reasons that will become appar-
ent below we will use record types contain-
ing these ptypes instead of the simple ptypes:[
e:pick up(a,c)

]
_
[
e:attract attention(a,b)

]
_[

e:throw(a,c)
]
_
[
e:run after(b,c)

]
_[

e:pick up(b,c)
]
_
[
e:return(b,c,a)

]
1See Wadler (2015) for an account of the origins of this

slogan from the perspective of computer science and Ranta
(1994) for a discussion of its relevance for linguistic seman-
tics

2The idea of events as strings come from work by Tim
Fernando, most recently presented in Fernando (2015).

This gives us a label ‘e’ which we can use as a
pointer to pick out the individual subevents. A
record,

[
e=s

]
, would be of type

[
e:pick up(a,c)

]
just in case s:pick up(a,c). We can think of a
record as modelling a situation with one or more
facts which hold in it. Witnesses for record types
may contain more facts than those required by the

type. Thus

[
e =s
e′=s′

]
would also be a witness of this

record type just in case the object, s, in the field
labelled by ‘e’ is of the appropriate type. Fields
with labels not mentioned in the type are ignored.

One aspect of coordination between the human
and the dog is that they both realize that the game
they are playing has this type. For each type in
the string an event of that type has to be created
and this has to be carried out in the appropriate
order, of course. One way to do this is to think
of the rules of the game as a collection of update
functions addressing an agenda in the agents’ in-
formation state. An agenda is a list of types (that
is, it is of type ‘[Type]’) which the agent plans
to realize in order. An update function can come
in one of two forms. The first form will map an
information state of a given type to a new type
which can then be used to compute a type for the
new information state. The second form will map
an information state of a given type and an event
of a given type to a new type which can be used
to compute a type for the new information state.
The type of information state we are using here
is

[
agenda:[RecType]

]
, that is the type of records

which have a field labelled ‘agenda’ which con-
tains a list of record types. (RecType is the type of
record types and [RecType] is the type of lists of
record types.) We can restrict the type of informa-
tion states to be one where the agenda is required
to be some specific list, L, by using a manifest
field:

[
agenda=L:[RecType]

]
, the type of informa-

tion states whose ‘agenda’-field contains the list,
L.

The two forms of update function are illustrated
with respect to the fetch game below.
λr:

[
agenda=[]:[RecType]

]
.[

agenda=[
[
e:pick up(a,c)

]
]:[RecType]

]
This function maps a state with an empty agenda
to the type of states where the agenda contains a
sole member the type of situation where a picks
up c.
λr:

[
agenda=[

[
e:pick up(a,c)

]
]:[RecType]

]
.



λe:
[
e:pick up(a,c)

]
.[

agenda=[
[
e:attract attention(a,b)

]
]:[RecType]

]
This function maps a state with the event type “a
picks up c” on the agenda and an event where a
picks up c to the type of state which has the type
“a attracts b’s attention” on the agenda. Such func-
tions can be used by an agent to predict what type
of information state could be licensed on the ba-
sis of the agent’s current information state and,
in the case of the second function, also an ex-
ternal event of a given type. The idea is that, if
f is such a function of type Ti → RecType (or
Ti → Te → RecType) and r : T ′

i is the cur-
rent information state where T ′

i is a subtype of Ti
(and also e : T ′

e, where T ′
e is a subtype of Te), the

type of the next information state is licensed to be
T ′
i ∧. f(r) (or T ′

i ∧. f(r)(e)). ‘ ∧. ’ is the opera-
tion of asymmetric merge (Cooper and Ginzburg,
2015; Cooper, in prep). Basically if one of T1, T2
is not a record type then T1 ∧. T2 = T2. If T1, T2
are both record types, then for labels they do not
have in common, T1 ∧. T2 will contain both the
fields from T1 and T2. For labels, `, they do have
in common, T1 ∧. T2 will contain a field labelled
` with the asymmetric merge of the two types in
that field in T1 and T2. Asymmetric merge corre-
sponds to the notion of priority unification in the
feature-based grammar literature (Shieber, 1986).
For example, the asymmetric merge of[

agenda=[
[
e:pick up(a,c)

]
]:[RecType]

other-info:T

]
with[

agenda=[
[
e:attract attention(a,b)

]
]:[RecType]

]
is [

agenda=[
[
e:attract attention(a,b)

]
]:[RecType]

other-info:T

]
An important word in the characterization of

update above is licensed. Actions are licensed by
previous events of the appropriate type as speci-
fied by the game. There is, of course, no necessary
inference that such an action will occur or even
that the type will appear on anybody’s agenda. We
can at any point decide to stop playing the game.
What we can infer is that if we stop in the mid-
dle we will not have completed the game and that
certain actions are necessary if we are to create an
instance of the game type we have in mind. In this
way the kind of inferencing that is involved here is
enthymematic in the sense of Breitholtz (2014a),
Breitholtz (2014b).

4 Joint action to achieve coordination

In Section 3 we have said something about what
it might mean for agents to be coordinated on the
type of the game they are playing and how they
might update their agendas on the basis of pre-
vious events considered as events in a particular
instance of the game. But we have said noth-
ing about which event types go on which agent’s
agenda. At first blush it seems there is a clear di-
vision of duties between the human and the dog
in the game of fetch. The human has to pick up
the stick, attract the dog’s attention and throw the
stick. The dog has to run after it and bring it back
to the human. Therefore it might appear that the
first three types should, at the appropriate point in
the game, appear on the human’s agenda and the
other two types, again at an appropriate point in
the game, appear on the dog’s agenda.

But let us think about this a little more carefully
before we develop a formal treatment which in-
volves the different types arriving on the appropri-
ate agenda. Suppose the human picks up the stick
and tries to realize the event type of attracting the
dog’s attention. But the dog is facing the other way
gnawing on a bone. The human perhaps calls to
the dog but gets no response. Perhaps the human
walks around the dog so that she is in the dog’s
line of sight. The dog turns around taking the bone
and faces away from the human. The game cannot
continue. The dog has to make a contribution to
the realization of the type ‘attract attention(a,b)’,
look at the stick, and look excited, bark or jump up
and down or something. The agent who realizes
the type is not just the intuitive “first argument” to
the predicate. The dog has to give some kind of
feed-back that it is up for the game.

Consider another scenario, a little further on in
the game. The stick has been thrown and the dog
has run after it and has it in its mouth but then
discovers that the human has disappeared. How
can the dog realize the type ‘return(b,c,a)’ if a
has wandered off somewhere and is nowhere to be
seen? No, the human has to contribute to the real-
ization of this type by at least staying close enough
to the dog and in the dog’s line of sight when it
turns round, quite possibly also by encouraging
the dog and looking like she expects the stick to
be brought back to her.

These actions are joint actions in the sense of
Clark (1996), even if one of the agents is active
and the other is fairly passive. Realizing the situ-



ation types in a game for two agents is not some-
thing that you can do on your own. The techni-
cal conclusion I would draw from this is that the
types associated with the game are entered onto
both agents’ agendas as the appropriate juncture
in the game as specified by the update functions.
Then even if there are types where you don’t have
to make any kind of active contribution to realiz-
ing the type at least there will be a mechanism for
causing you to wait until the type on the agenda
has been realized before moving on and updating
the agenda with a new type. This is known as turn
taking.

5 Joint action and turn taking in
dialogue

I have dwelt at length on the non-linguistic exam-
ple of the game of fetch because I believe that the
basic strategies of coordination, including turn-
taking, in dialogue are really the same strategies
needed by collaborating agents even without lan-
guage. The event types involved are very differ-
ent, involving types of speech events which on an
evolutionary scale are extremely specialized and
even arcane, but I would like to suggest that the
basic turn-taking mechanism which enables coor-
dination in speech is built on the kind of cognitive
abilities and strategies necessary for coordinating
agents independent of whether they have language
or not. This is one reason that it seems important
to embed a formal theory of language in a general
formal theory of action.

In the literature involving gameboards of the
kind Ginzburg has proposed (Ginzburg, 2012)
there has not be a great deal of emphasis on get-
ting turn taking to work out. For those of us work-
ing with agendas in this kind of framework fol-
lowing (Larsson, 2002), there has been the gen-
eral assumption that what goes on the agenda are
types of events in which the agent is the main ac-
tor. Thus, for example, if agent A asks a question
of agentB, then the type of the question event first
goes on A’s agenda and this licenses A to realize
an event of this type, that is, ask the question. B,
on hearing A’s utterance of the question, plans to
answer the question, that is, puts a type on B’s
agenda which is the type of an answer to the ques-
tion. (This assumes that A and B are playing a
straightforward question-answer game rather than
something more complicated like a clarification or
rejection of the question.) At the point at which

B is in this state and utters an answer, A’s agenda
is empty. There is nothing in such a formal ac-
count which represents the fact that when you ask
a question you are supposed to wait an appropriate
amount of time for an answer and be collaborative.
That is, in a normal question-answer exchange you
are not supposed to ask a question and then walk
out of the room or sing at the top of your voice so
that you cannot hear the answer. It seems that the
kind of coordination that is required here is ex-
actly like that required between the dog and the
human when the dog is picking up the stick. Just
like the “passive” role that the human has to play
in the returning of the stick, a questioner has a role
to play in realizing the type where the question is
answered, namely by showing that they are ready
to receive the answer. Both A and B should have
a type of the answering event on the agenda and
jointly play their respective roles in realizing the
type. Note that it need not be the case that A and
B have exactly the same type on the agenda. For
example, A will have a type for a situation where
B answers the question. It may be that, at least
at some point, before actually answering the ques-
tion, B has a subtype of A’s type on the agenda,
namely one that in addition specifies a content for
the answer. That is, it is A’s job to facilitate an
answer, whatever it is. It is B’s job to give some
particular answer to the question. This shows that
a notion of A and B being coordinated does not
necessarily involve having the same types on their
respective agendas. But perhaps what counts as
coordination is that the respective types stand in
the subtype relation and perhaps one could even
claim that the type that the main actor of the event
has must be a subtype of the type that the “sup-
porting” actor has. If it is the other way around
then perhaps the supporting actor was expecting
something of the main actor that they didn’t do in
the end – a sign of miscoordination.

6 Conclusion

We have suggested a simple notion of turn tak-
ing as a kind of coordination between informa-
tion states in agents both in linguistic and non-
linguistic games and we have emphasized the im-
portance of embedding a formal theory of lan-
guage in a formal theory of action. It seems on
this view that almost any speech act is a kind of
joint action, albeit in many cases with a “leading”
actor and a “supporting” actor.



References
Ellen Breitholtz. 2014a. Enthymemes in Dialogue: A

mico-rhetorical approach. Ph.D. thesis, University
of Gothenburg.

Ellen Breitholtz. 2014b. Reasoning with topoi – to-
wards a rhetorical approach to non-monotonicity. In
Proceedings of AISB Symposium on “Questions, dis-
course and dialogue: 20 years after Making it Ex-
plicit”.

Herbert Clark. 1996. Using Language. Cambridge
University Press, Cambridge.

Robin Cooper and Jonathan Ginzburg. 2015. Type the-
ory with records for natural language semantics. In
Lappin and Fox (Lappin and Fox, 2015), pages 375–
407.

Robin Cooper. 2014. How to do things with types. In
Valeria de Paiva, Walther Neuper, Pedro Quaresma,
Christian Retoré, Lawrence S. Moss, and Jordi
Saludes, editors, Joint Proceedings of the Second
Workshop on Natural Language and Computer Sci-
ence (NLCS 2014) & 1st International Workshop
on Natural Language Services for Reasoners (NLSR
2014) July 17-18, 2014 Vienna, Austria, pages 149–
158. Center for Informatics and Systems of the Uni-
versity of Coimbra.

Robin Cooper. in prep. Type theory and
language: from perception to linguistic com-
munication. Draft of book chapters available
from https://sites.google.com/site/
typetheorywithrecords/drafts.

Tim Fernando. 2015. The Semantics of Tense and As-
pect: A Finite-State Perspective. In Lappin and Fox
(Lappin and Fox, 2015).

Jonathan Ginzburg. 2012. The Interactive Stance:
Meaning for Conversation. Oxford University
Press, Oxford.

Shalom Lappin and Chris Fox, editors. 2015. The
Handbook of Contemporary Semantic Theory. In
Lappin and Fox (Lappin and Fox, 2015), second edi-
tion.

Staffan Larsson. 2002. Issue-based Dialogue Manage-
ment. Ph.D. thesis, University of Gothenburg.

Per Martin-Löf. 1984. Intuitionistic Type Theory. Bib-
liopolis, Naples.

Richard Montague. 1973. The Proper Treatment of
Quantification in Ordinary English. In Jaakko Hin-
tikka, Julius Moravcsik, and Patrick Suppes, editors,
Approaches to Natural Language: Proceedings of
the 1970 Stanford Workshop on Grammar and Se-
mantics, pages 247–270. D. Reidel Publishing Com-
pany, Dordrecht.

Richard Montague. 1974. Formal Philosophy: Se-
lected Papers of Richard Montague. Yale University
Press, New Haven. ed. and with an introduction by
Richmond H. Thomason.

Bengt Nordström, Kent Petersson, and Jan M. Smith.
1990. Programming in Martin-Löf’s Type Theory,
volume 7 of International Series of Monographs on
Computer Science. Clarendon Press, Oxford.

Aarne Ranta. 1994. Type-Theoretical Grammar.
Clarendon Press, Oxford.

Stuart Shieber. 1986. An Introduction to Unification-
Based Approaches to Grammar. CSLI Publications,
Stanford.

Philip Wadler. 2015. Propositions as Types. Commu-
nications of the ACM, 58(12):75–84.


